

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

PHYSICAL SCIENCES GRADE 11 CONTROLLED TEST

TERM 4 2021

MARKS: 100

TIME: 2 hours

DATE: NOV 2021

This question paper consists of 9 pages and 3 data sheets.

NSC

1

INSTRUCTIONS AND INFORMATION

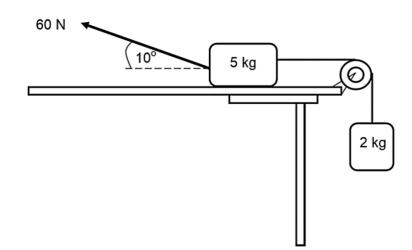
- 1. This Question paper consists of 7 questions. Answer ALL the questions.
- 2. Start each question on a new page in your answer book or on folio paper.
- 3. Number your answers correctly according to the numbering system used in this question paper.
- 4. Leave a line open between sub-questions.
- 5. You may use a non-programmable calculator.
- 6. Show all formulae and substitutions.
- 7. You are advised to use the data sheets attached at the back of this question paper.
- 8. Round off all answers to a minimum of TWO decimal places where necessary.
- 9. Give brief motivations and discussions where required.
- 10. Write neatly and legibly.

2

QUESTION 1

MULTIPLE CHOICE: Four possible answers are provided. Choose the answer which is the most correct. Write only the question number and the letter of your choice. Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A - D) next to the question number (1.1 – 1.4) in the ANSWER BOOK, for example 1.1.1 D 1.1 The magnitude of an electrostatic force is ______ to the

- magnitude of the product of the charges. (2)
- А directly proportional
- В inversely proportional
- С same
- D uniform

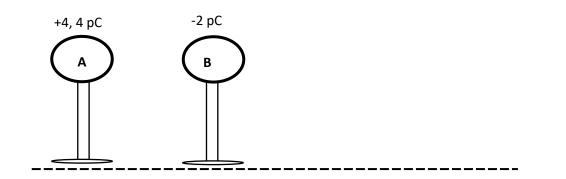

1.2. Two charges + 4pC and -6 pC are placed at a distance of 6m apart. The force between two point charges is _____. (2)

- А repulsion
- В attraction
- С charges
- D positive

QUESTION 2 (Start on a new page)

A 5 kg block is resting on a rough table as shown in the diagram below. The 5 kg block is connected to a suspended 2 kg block by a light inextensible string over a frictionless pulley. The coefficient of kinetic friction between the table and the 5 kg block is 0,5.

A 60 N force is applied at an angle of 10° to the horizontal which causes the block to accelerate to the LEFT.

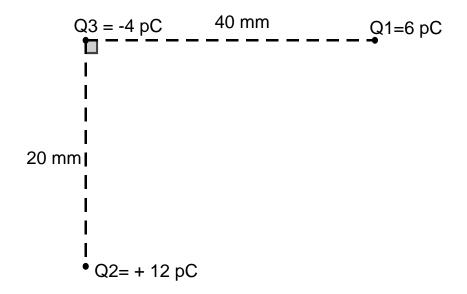


2.1	Define Newton's second law of motion.	(2)
2.2	Draw a free body diagram of all the forces acting on the 5kg block.	(5)
2.3	Calculate the normal force acting on the 5 kg block.	(3)
2.4	Calculate the acceleration of the system.	(6)

[16]

QUESTION 3

Two identical metal spheres **A** and **B** are placed on insulated stands. Spheres **A** and **B** carry charges of +4, 4 pC and -2 pC respectively.

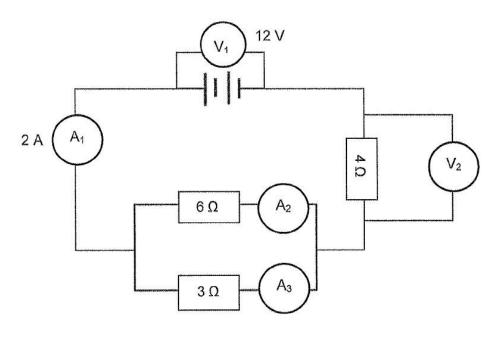


3.1	Which sphere has more electrons? A or B	(1)

3.2 The spheres are allowed to come together and separated.

3.2.1	Will the spheres attract or repel each other after separation? Motivate your answer.	(3)
3.2.2	Calculate the charge on each sphere after they have	()
	separated.	(3)
3.2.3	Calculate the number of electrons at charge B.	(3)

3.3 Three point charges, Q ,Q₁₂ andQ₃, carrying charges of 6 pC, - 4pC and +12 pC respectively, are arranged in space as shown in the diagram below. The distance between Q₃ and Q₁ is 40 mm and that between Q₃ and Q₂ is 20 mm.


- 3.3.1 State Coulomb's Law in words.
- 3.3.2 Calculate the net force acting on charge Q3 due to the presence of Q1 and Q2. (7)
- 3.3.3 Define electric field at a point in words.
- (2) 3.3.4 Draw the net electric field pattern due to charges Q2 and Q3. (3)
- 3.3.5 Calculate the magnitude and direction of electric filed between Q3 and Q1. (3)

[27]

(2)

QUESTION 4

In the circuit diagram below the reading on voltmeter V₁ is 12 V and the reading on ammeter A1 is 2 A.

Calculate the:

- 4.1 Reading on V_2 (3) 4.2 Reading on A_2 (4)
- 4.3 Amount of charge that flows through ammeter A_1 in 120 s (3)

[10]

CHEMISTRY SECTION B

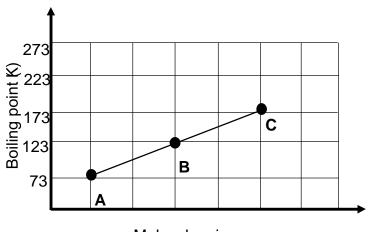
QUESTION 1

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A - D) next to the question number (1.1 - 1.2) in the ANSWER BOOK, for example 1.1.1 D 1.1 The type of intermolecular forces present between methane (CH₄) (2)

- A London forces
- B Ion Dipole forces
- C Dipole-dipole forces
- D Hydrogen Bond

1.2 Butene has the empirical formula CH₂. The molecular mass of butene is

56g.mol⁻¹. The molecular formula of butane is_____ (2)


- A C4 H₈
- B CH₄
- C C3 H₆
- D CH₂

7

QUESTION 2

2.1 The graph of molecular size versus the boiling point is given below.

The **letters A**, **B** and **C** represent the compounds CH_4 , C_4H_6 and C_3H_8 respectively.

Molecular size

2.1.1 Define the term *boiling point*.

(2)

2.1.2. Describe the trend in the boiling points of the compounds as shown by the graph. (2)

- 2.1.3. Explain the answer to QUESTION 2.1.2 by referring to MOLECULAR SIZE, TYPE and STRENGTH of INTERMOLECULAR FORCES. (3)
- 2.1.4 Which ONE of the compounds (A, B or C) has the HIGHEST vapour pressure? Explain the answer by referring to the data on the graph.(2)
- 2.2 Consider the two molecules in the table below.

NAME OFSUBSTANCE	FORMULA	MOLACULAR MASS (g)	BOILING POINT (°C)				
Ammonia	NH ₃	17	- 33				
Phosphine	PH₃	x	- 87,4				

2.2.1 Determine the molecular mass (x) of phosphine

(1)

(3) **[13]**

2.2.2 Explain the difference in the boiling points by referring to the TYPE and STRENGTH of INTERMOLECULAR FORCES.

Copyright reserved

8

QUESTION 3

3. 1.Learners made a mini volcano in science laboratory by adding sodium bicarbonate to ethanoic acid. They added 100 ml of a 0, 2 mol.dm⁻³ ethanoic acid solution to 10 g of NaHCO₃ to start the reaction of the volcano.

The balanced equation for this reaction is:

CH₃COOH (aq) +NaHCO₃ (s) \rightarrow CH₃COONa (aq) +H₂O (l) +CO₂ (g)

3.1.2	Define the term limiting reagent. Determine the limiting reagent in this reaction. Calculate the mass of the other substance in excess.	(2) (6) (3)
3.1.4	Calculate the volume of CO ₂ produced at STP.	(4)

3.2 .A solution of potassium hydroxide (KOH) is prepared by dissolving 3,36 g crystals of KOH in 250 $\rm cm^3$ of water.

Calculate the concentration of the potassium hydroxide solution.

(4)

3.3 .25 cm³ of a potassium hydroxide solution of concentration 0,25 mol.dm-3 completely neutralises a dilute solution of sulphuric acid (H_2SO_4) in a flask.

The unbalanced equation below represents the reaction that takes place:

$$H_2SO_4 (aq) + KOH (aq) \rightarrow K_2 SO_4 (aq) + H_2O (\ell)$$

3.3.1 Balance the above equation.	(2)

3.3.2 Calculate the mass of sulphuric acid in the flask. (5)

[25]

TOTAL: 100 DATA FOR PHYSICAL SCIENCES GRADE 11

DATA FOR PHYSICAL SCIENCES PAPER 1 (PHYSICS)

TABLE 1: PHYSICAL CONSTANTS / TABEL 1: FISIESE KONSTANTES

NAME / NAAM	SYMBOL / SIMBOOL	VALUE / WAARDE
Acceleration due to gravity Swaartekragversnelling	g	9,8 m·s⁻²
Gravitational constant Swaartekragkonstante	G	6,67 x 10 ⁻¹¹ N⋅m ² ⋅kg ⁻²
Radius of Earth Straal van Aarde	R _E	6,38 x 10 ⁶ m
Coulomb's constant Coulomb se konstante	к	9,0 x 10 ⁹ N⋅m ² ⋅C ⁻²
Speed of light in a vacuum Spoed van lig in 'n vakuum	с	3,0 x 10 ⁸ m·s⁻¹
Charge on electron Lading op elektron	e	-1,6 x 10 ⁻¹⁹ C
Electron mass Elektronmassa	m _e	9,11 x 10 ⁻³¹ kg
Mass of the earth Massa van die Aarde	М	5,98 x 10 ²⁴ kg

TABLE 2: FORMULAE / TABEL 2: FORMULES

MOTION/BEWEGING

$v_f = v_i + a \Delta t$	$\Delta \mathbf{X} = \mathbf{V}_{i} \Delta \mathbf{t} + \frac{1}{2} \mathbf{a} \Delta \mathbf{t}^{2}$
$v_f^2 = v_i^2 + 2a\Delta x$	$\Delta \mathbf{x} = \left(\frac{\mathbf{v}_{f} + \mathbf{v}_{i}}{2}\right) \Delta \mathbf{t}$

FORCE / KRAG

F _{net} = ma	w = mg
$\mathbf{F} = \frac{\mathbf{Gm}_{1}\mathbf{m}_{2}}{\mathbf{r}^{2}}$	$\mu_{s} = \frac{f_{s(max)}}{N}$
$\mu_{k} = \frac{f_{k}}{N}$	

		_																						_																													
	18 (III)		с 2		9	Ne	20	18	A	40	36	Ā	84	54	Xe	131	98	ጿ		-	11	2	175	103	۲																												
	17 (IIV)				6	LL 0'†∕	19	17	о, є 0, є	35,5	35	8,S	80	53		127	85	s,s At			20	٩۲	173	102	۶																												
	16 (VI)				8	0 3'2	16	16	S ,55		34	s,₄	79	52	۲,۲ ۵,1	128	84	2 ^{,0}			69	Tm	169	101	М																												
	15 S				2	Z 0'E	14	15	2,1 ۲,5	31	33	م, As	75	51	6'₽	122	83	6'₽	209		68	Ъ	167	100	E																												
	4 2				9		12	14	8, r 2		32		73	50	^{8,} 1	119	82	8, r b	207		67	ደ	165	66	ыs																												
	13 [[]				5		11	13	۹, ۴ R	27	31	^{9, ↑}	70	49	۲ ۲,۲	115	81	^{8,} 1	204	•	99	2	163	98	പ്																												
TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE	12										30		65	48		112	80	Нg	201		65	đ	159	97	푗																												
TABLE 3: THE PERIODIC TABLE OF ELEMENTS ABEL 3: DIE PERIODIEKE TABEL VAN ELEMENT	7										29	B 6, r	63,5	47	^{6,} 1	108	6/	Au	197	-	64	8	157	96	с С																												
'ABLE C TABEL V	10		Atomic number Atooingetal	umber jeta/		lodu	Simbool			mass	nassa	28	8'≀	59	46	5,2 Z,2	106	78	Ł	195		63	Eu	152	95	Am																											
IODIC T	6	umber				umber <i>jetal</i>		getal			Atoomgetal	umber <i>jetal</i>		umber <i>jetal</i>		Atomic number Atoomgetal		Atomic number Atoomgetal		Atomic number Atoomgetal		Atomic number Atoomgetal		Atomic number Atoomgetal			•			e atomic	atoom	27	8, r S	59	45		103	11	-	192		62	Sm	150	94	Pu							
HE PER	8	tomic n			Atoom		Atoom		tomic n Atoom(tomic n Atoom(tomic n Atoom												tomic n Atoom		tomic n Atoom		tomic r Atoom		Atoom			n S S	r'rn -	•	Approximate relative atomic mass	elatiewe	26	8, r Fe	56	44	۲,۲ Ru	101	9/	ő	190		61	Pm		93
LE 3: T L 3: DIE	7	4		ζ		Č		⋖ ⁻		< └		⋖ -		< └												α '		vity	/iteit →			ximate	Benaderde relatiewe atoommassa	25	a, r Mn	55	43	^{6, ۱}		75	Re	186		09	PQ	144	92	⊃	238				
TAB TABE	9		EUTEL		onegati	Elektronegatiwiteit			Appro						24	۹,۴ 2	52	42	8, r Mo	96	74	≥	184		29	ታ	141	91	Pa																								
	5		KEY/SLI		Electr	Elektro									23	9'۲	51	41	q	92	73	Ta	181	-	58	ပီ	140	06	f	232																							
	4		-		-														22	۲ ۱'و		40	₽, r Z	91	72	9'≀	179																										
	°										21	ε'ι S	45	39	≻	89	57	La	139	80	Ac																																
	[] ∽	E			4	۶,۴ B	9	12	z'≀	24	20		40	38		88	56	6'0	137		6,0 8,0	077																															
	-€	~≘ <mark>~ ≖</mark>		- - -			7	11			19		39	37		86	55		133	87	F																																
		L	ŀ	C		0 1			00			σU			8 U			20			2'0																																

NSC

10 NSC