

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

PHYSICAL SCIENCES: CHEMISTRY (P2)
JUNE EXAMINATION

2020

**NATIONAL
SENIOR CERTIFICATE**

GRADE 12

Time: 3 hours

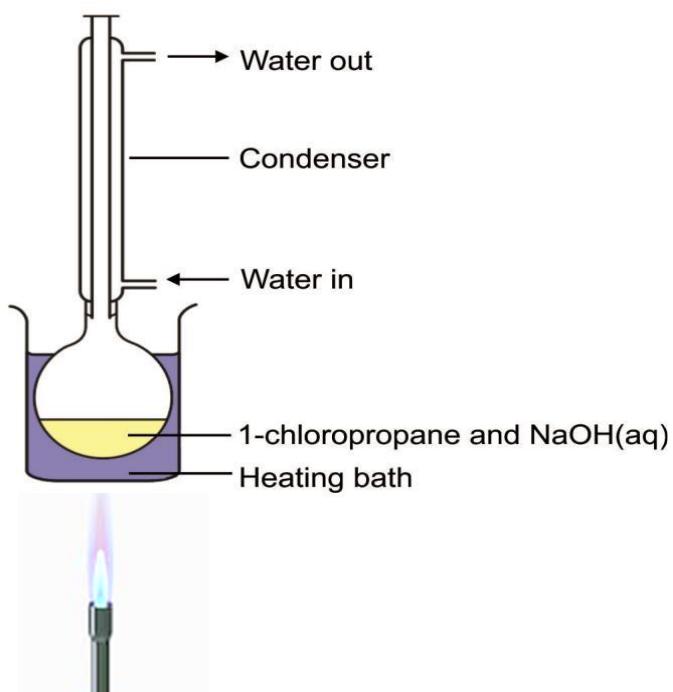
Marks: 150

NB. This question paper consists of 15 pages and 4 Data Sheets.

INSTRUCTIONS AND INFORMATION

1. Write your examination number and centre number in the appropriate spaces on the ANSWER BOOK.
2. This question paper consists of NINE questions, FIFTEEN pages and FOUR data sheets.
3. Start EACH question on a NEW page in the ANSWER BOOK.
4. Number the answers correctly according to the numbering system used in this question paper.
5. Leave ONE line between two sub questions, e.g. between QUESTION 2.1 and QUESTION 2.2.
6. You may use a non-programmable calculator.
7. Show ALL formulae and substitutions in ALL calculations.
8. Round off your FINAL numerical answers to a minimum of TWO decimal places.
9. Give brief motivations, discussions, etc. where required.
10. You are advised to use the attached DATA SHEETS.
11. Write neatly and legibly.
12. Answer ALL the questions in the ANSWER BOOK.

QUESTION 1 MULTIPLE CHOICE QUESTIONS

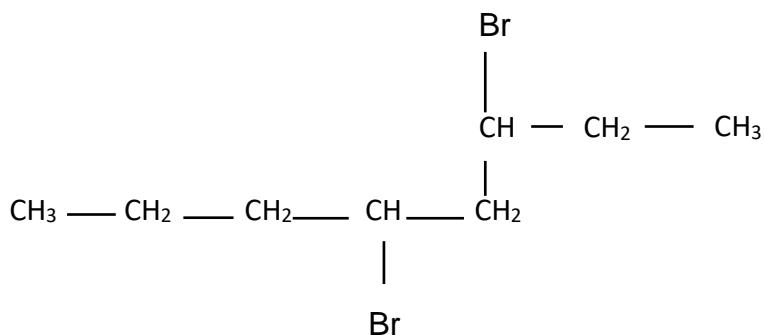

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter A, B, C or D next to the question number in the ANSWER BOOK, e.g. 1.11 A

1.1 The number of isomers for C_4H_{12} is:

- A. 5
- B. 4
- C. 3
- D. 2

(2)

1.2 1-chloropropane is heated under reflux with an aqueous solution of sodium hydroxide as shown in the diagram.



The TYPE of reaction taking place above, is

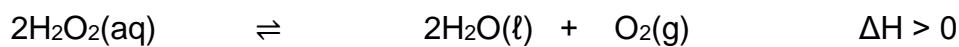
- A. Addition
- B. Hydrolysis
- C. Elimination
- D. Hydrohalogenation

(2)

1.3 The condensed structural formula of an organic compound is shown below:

Which ONE of the following is the correct IUPAC name of this compound?

- A. 4,6-dibromooctane
- B. 4-bromo-5-bromo-5-propylpentane
- C. 3,5-dibromooctane
- D. 2-bromo-1-bromo-1-propylpentane


(2)

1.4 When methanol reacts with methanoic acid, the molecular formula of the organic product formed is:

- A. $\text{H}_4\text{C}_3\text{O}_2$
- B. H_2O
- C. $\text{H}_4\text{C}_2\text{O}_2$
- D. $\text{H}_3\text{C}_3\text{O}_2$

(2)

1.5 Which ONE of the following will DEFINITELY NOT INCREASE the rate at which oxygen is produced in the following reaction?

- A. Increase in temperature
- B. Increase in pressure
- C. Increasing the concentration of H_2O_2
- D. Adding a suitable catalyst

(2)

1.6 Hydrogen bromide decomposes according to the following equation:

2mol of each of HBr, H₂ and Br₂ were placed in a sealed container and heated to 420K. When equilibrium is established it was found that:

- A. the number of moles of HBr would be unchanged.
- B. the number of moles of Br₂ would have decreased.
- C. the value of K_c would have increased to 1.
- D. the number of moles of gas would have decreased.

(2)

1.7 The expression for the equilibrium constant (K_c) of a hypothetical reaction is given as follows:

$$K_c = \frac{[\text{D}]^2[\text{C}]}{[\text{A}]^3}$$


Which ONE of the following equations represents this reaction?

- A. 3A(l) \rightleftharpoons C(aq) + 2D(aq)
- B. 3A(s) \rightleftharpoons C(g) + 2D(g)
- C. 3A(aq) + B(s) \rightleftharpoons C(aq) + 2D(aq)
- D. 3A(aq) + B(s) \rightleftharpoons C(g) + D₂(g)

(2)

1.8 Two learners, X and Y, prepared hydrogen gas in the laboratory by adding hydrochloric acid to an excess of magnesium.

The equation for the reaction is:

Each learner was given the same mass of Mg and the same volume of HCl. Their results were tabulated as follows:

	Time (minutes)	1	2	3	4
Learner X	Volume of H ₂ (cm ³)	20	30	35	35
Learner Y	Volume of H ₂ (cm ³)	30	35	40	40

The reasons for the different volumes that X and Y obtained are:
Y used ...

- A. a catalyst and a higher concentration of HCl than X.
- B. a catalyst and a higher temperature than X.
- C. a catalyst and powdered magnesium. (2)
- D. powdered magnesium and a higher temperature than X.

1.9 A 10cm³ sample of a strong acid has a pH of 4. Addition of 990 cm³ of pure water to this sample will form a solution of pH of ...

- A. 2,0
- B. 4,0
- C. 5,5
- D. 6,0 (2)

1.10 Which one of the indicator ranges below is most suitable in the titration of ethanoic acid and sodium hydroxide.

- A. 3,1-4,4
- B. 6,0-7,6
- C. 8,4-10,0
- D. 10,0-14,0 (2)

[20]

QUESTION 2 (Start on a new page)

The letters A to F in the table below represent six organic compounds. Use the information in the table to answer the questions that follow.

A	$ \begin{array}{c} \text{H} \quad \text{Cl} \\ \quad \\ \text{H} - \text{C} - \text{C} - \text{Cl} \\ \quad \\ \text{Br} \quad \text{H} \end{array} $	B	3-methylpentan-2-one
C	$ \left[\begin{array}{c} \text{O} \quad \text{O} \\ \parallel \quad \parallel \\ - \text{O} - \text{C} - \text{CH}_2 - \text{C} - \\ \end{array} \right]_n $	D	$ \begin{array}{c} \text{H} \quad \text{H} \quad \text{O} \\ \quad \quad \parallel \\ \text{H} - \text{C} - \text{C} - \text{C} - \text{OH} \\ \quad \\ \text{H} \quad \text{H} \end{array} $
E	C ₆ H ₈	F	$ \begin{array}{c} \text{O} \\ \parallel \\ \text{HCCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \end{array} $
G	$ \begin{array}{c} \text{Cl} \\ \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CCH}_3 \\ \\ \text{CH}_3 \end{array} $	H	$ \begin{array}{c} \text{H} \quad \text{H} \quad \text{H} \\ \quad \quad \\ \text{H} - \text{C} - \text{C} - \text{C} - \text{H} \\ \quad \quad \\ \text{H} \quad \text{H} \quad \text{OH} \end{array} $

2.1 Write down the letter from the table that represents the following:

- 2.1.1 An unsaturated hydrocarbon. (1)
- 2.1.2 Two compounds that are FUNCTIONAL ISOMERS of each other. (2)
- 2.1.3 A tertiary haloalkane. (1)
- 2.1.4 An aldehyde (1)

2.2 Write down the:

2.2.1 IUPAC name of compound **A**. (2)

2.2.2 IUPAC name of compound **F**. (2)

2.2.3 IUPAC name of a POSITIONAL ISOMER of **H**. (1)

2.2.4 the FUNCTIONAL group of compound **D**. (2)

2.2.5 GENERAL FORMULA of homologous series of compound **G**. (2)

2.3 Identify the letter of the polymer in the table. (1)

2.4 Name **and** define the type of polymerization that the compound identified in 2.3 has undergone. (3)

[18]

QUESTION 3 (Start on a new page)

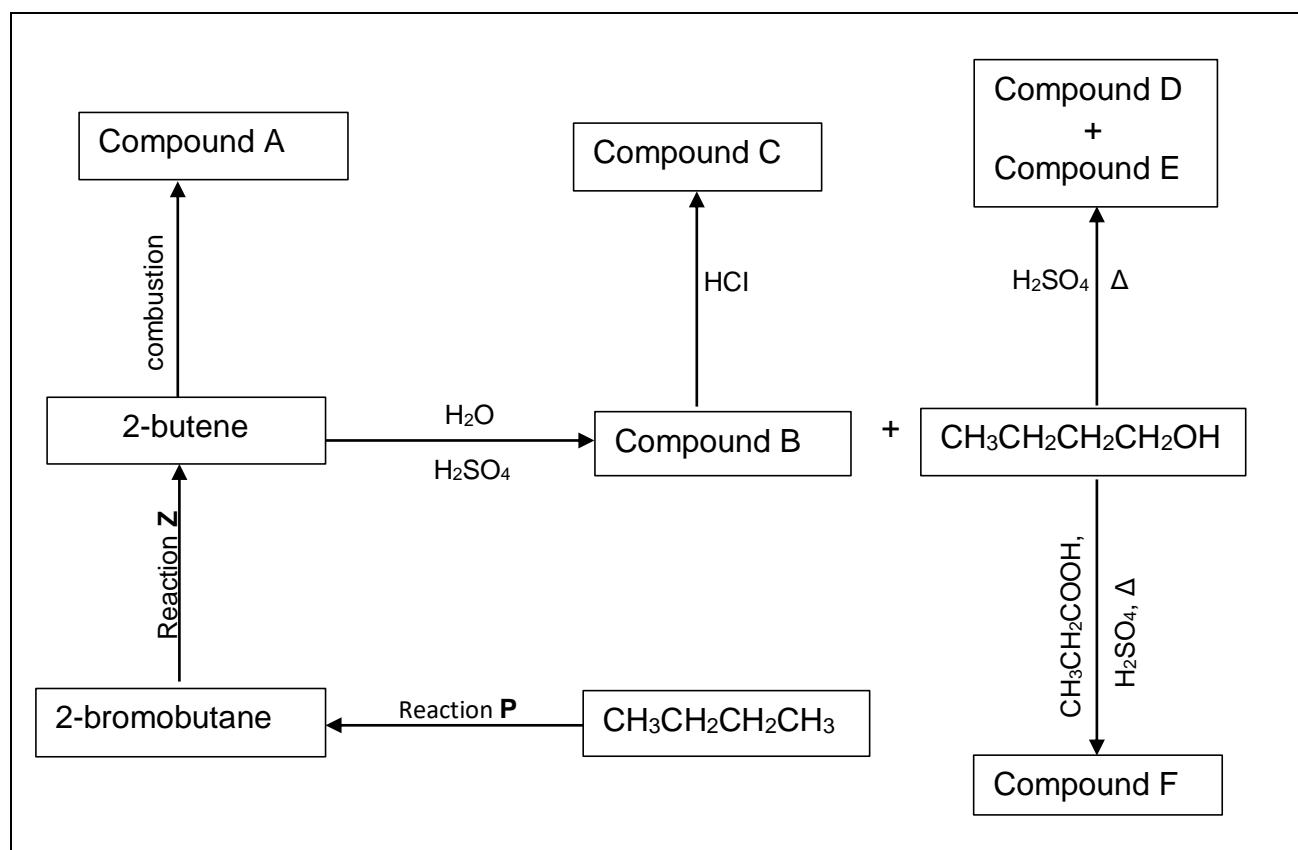
The table below compares melting point, boiling point and vapour pressure of organic compounds with different functional groups with regards to type and strength of intermolecular forces between molecules.

Compound	Molecular formula	Molecular mass g.mol ⁻¹)	Melting point °C)	Boiling point (°C)	Vapour pressure (kPa at 20°C)
A. Ethane	C ₂ H ₆	30	-183	-89	3 750
B. Chloroethane	C ₂ H ₅ Cl	64,5	-136	12	132,4
C. Ethanol	C ₂ H ₅ OH	46	-89	78	5,8
D. Ethanoic acid	C ₂ H ₅ COOH	60	16	118	1,6

3.1 Define melting point. (2)

3.2 By referring to the **type and strength** of intermolecular forces, explain the following:

3.2.1 The differences in the boiling point between compound A and B. (3)


3.2.2 The differences in the melting point between compound C and D. (3)

3.3 Explain the relationship between boiling point and vapour pressure, by referring to the trend of compound A and D in the table. (2)

[10]

QUESTION 4 (Start on a new page)

Study the following flow diagram that illustrates reactions of organic compounds.

4.1 Using MOLECULAR FORMULAE, write a balanced equation showing the formation of compound **A**. (3)

4.2 Write down the reaction conditions for:

4.2.1 Reaction P (2)

4.2.2 Reaction Z. (2)

4.3 Study the formation of compound **B**:

4.3.1 Write down the IUPAC name and STRUCTURAL FORMULA of compound **B**. (3)

4.3.2 Name the homologous series to which compound B belongs. (1)

4.3.3 Is compound **B** a primary, secondary or tertiary product? Give a reason for your answer. (2)

4.3.4 Name the TYPE of reaction that results in the formation of compound **B**. (1)

4.4 Write down the STRUCTURAL FORMULA of compound C. (2)

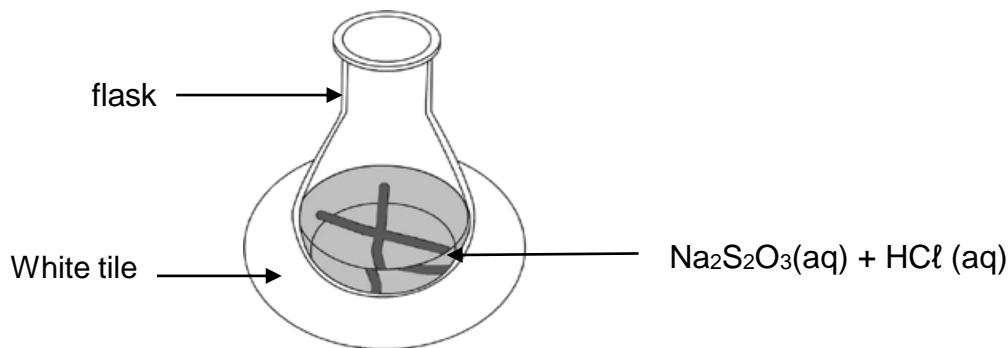
4.5 Name the TYPE of reaction where compound C is formed. (1)

4.6 Write down the IUPAC name of *organic* compound D. (2)

4.7 Write down the STRUCTURAL FORMULA for inorganic product E. (2)

4.8 Write down the IUPAC name and draw the STRUCTURAL FORMULA of compound F. (3)

4.9 Name the TYPE of reaction that results in the formation of product F. (1)


[25]

QUESTION 5 (Start on a new page)

The reaction between dilute hydrochloric acid and sodium thiosulphate ($\text{Na}_2\text{S}_2\text{O}_3$) is used to investigate one of the factors that influences reaction rate. The balanced equation for the reaction is:

The hydrochloric acid solution is added to the sodium thiosulphate solution in a flask. The flask is placed over a cross drawn on a sheet of white paper, as shown in the diagram below. The time that it takes for the cross to become invisible is measured to determine the reaction rate.

Four experiments, A to D, are conducted during this investigation. The volumes of reactants used in each of the four experiments and the times of the reactions are summarised in the table below.

Experiment	Volume of $\text{Na}_2\text{S}_2\text{O}_3(\text{aq})$ (cm^3)	Volume of $\text{H}_2\text{O}(\ell)$ (cm^3)	Volume of $\text{HCl}(\text{aq})$ (cm^3)	Time (s)
A	25	0	5	50,0
B	20	5	5	62,5
C	15	10	5	83,3
D	10	15	5	125,0

5.1 Define *reaction rate*. (2)

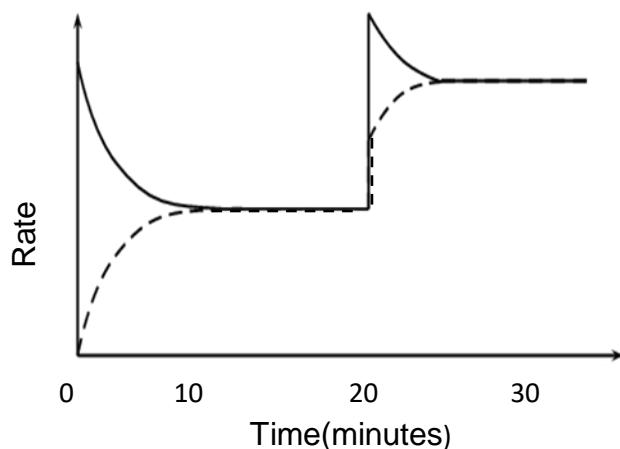
5.2 State TWO factors that can affect the rate of the above reaction. (2)

5.3 Write down the NAME of the product that causes the cross to become invisible. (1)

5.4 Write down an investigative question for this investigation. (2)

5.5 In which experiment (A, B, C or D) is the reaction rate the highest. (2)

5.6 Use the collision theory to explain the difference in reaction rate between experiments B and D. (3)


5.7 Experiment D was carried out in a sealed container. If the volume of $\text{SO}_2(\text{g})$ collected was 50cm^3 , calculate the reaction rate in $\text{cm}^3\cdot\text{s}^{-1}$. (3)

5.8 The original $\text{Na}_2\text{S}_2\text{O}_3$ solution was prepared by dissolving 100g of crystals in 250ml of water in a volumetric flask. Calculate the mass of the sulphur, S, that will form in experiment A if the $\text{Na}_2\text{S}_2\text{O}_3$ is limiting. (7)

[22]

QUESTION 6 (Start on a new page)

6.1 Methanol vapour is sealed in a closed container and it reaches equilibrium after 10 minutes at a temperature of 400K. After 20 minutes, the temperature is increased to 600K. Study the graph of rate verses time for the reaction and answer the questions.

6.1.1 Is the above reaction homogenous or heterogeneous at equilibrium? Give reason for your answer. (2)

6.1.2 Write down a balanced equation for the reaction represented by the dotted line. (2)

6.1.3 Provide a reason for the decrease in reaction rate represented by the solid line between the times, 0 minutes and 10 minutes. (1)

6.1.4 Is the reaction represented by the dotted line exothermic or endothermic? Give a reason for your answer. (3)

6.1.5 By referring to the graph explain what is happening between 10 and 20 minutes. (2)

6.1.6 How does the value of K_c compare between the 18th and 28th minute? Write only INCREASES, DECREASES OR REMAINS THE SAME. (1)

6.1.7 Draw a sketch graph showing the addition of a catalyst to the above reaction after 30 minutes. (4)

6.2 Sulphur trioxide is formed industrially during the Contact Process. This reaction is an example of dynamic equilibrium:

$$2 \text{ SO}_2 \text{ (g)} + \text{ O}_2 \text{ (g)} \rightleftharpoons 2 \text{ SO}_3 \text{ (g)} \quad \Delta H = -197 \text{ kJ.mol}^{-1}$$

6.2.1 State Le Chatelier's principle. (2)

6.2.2 Use Le Chatelier's principle to determine what happens to the concentration of SO_3 when:
[Write only INCREASE, DECREASE, NO CHANGE]

6.2.2.1 temperature is increased. (1)

6.2.2.2 pressure is increased. (1)

6.2.3 0,3 moles of SO_2 (g) is mixed with an unknown mass of O_2 (g) in a sealed 10 dm³ container. When equilibrium is reached at a certain temperature, it is found that 0,2 moles of SO_3 (g) is present. If the equilibrium constant (K_c) for the reaction at the temperature of 300K is 4, calculate the initial mass of O_2 that was present in the container. (8)

[27]

QUESTION 7 (Start on a new page)

7.1 Define a Bronsted Lowry acid. (2)

7.2 A group of learners wish to identify element X, in weak base X_2CO_3 . They first dissolve 0,795g of X_2CO_3 in 250 ml volumetric flask with water to prepare a standard solution. They then titrate this solution with 0,5 mol. dm^{-3} hydrochloric acid. The results of their titration is found in the table below.

Volume of Acid(cm^3)	Volume of base(cm^3)
14,8	12,5
15,2	12,8
15,1	11,9
14,9	12,8
Average: 15,0 cm³	12,5 cm³

Identify element X in the equation by means of a suitable calculation. (8)

7.3 A learner spills a little hydrochloric acid on concentration 5 mol. dm^{-3} by accident on the laboratory desk. She quickly neutralizes the acid by sprinkling small amounts of sodium hydrogen carbonate on it. When all the acid was neutralized, he noticed that bubbles of carbon dioxide stops forming after 7g of sodium hydrogen carbonate was sprinkled.

7.3.1 Calculate the volume of hydrochloric acid that was spilled (in cm^3) if all the sodium hydrogen carbonate reacted with the acid. (6)

7.3.2 The learner dilutes some of the 5 mol. dm^{-3} , acid to 0,1 mol. dm^{-3} . Calculate the volume of the 5 mol. dm^{-3} , hydrochloric acid needed to prepare 1 dm^3 of diluted acid. (3)

7.4 In a separate experiment the learner takes 3,68 g of an impure sample $NaHCO_3$ and adds it to distilled water to make up a 275 cm^3 solution. During the titration he found that 25 cm^3 of this solution neutralized 23,5 cm^3 of a 0,11 mol. dm^{-3} solution of HCl.

7.4.1 If the concentration of the base at endpoint was 0,052 mol. dm^{-3} , calculate the percentage purity of the $NaHCO_3$ sample. (6)

7.4.2 Calculate the pH of the HCl solution. (3)

[28]

TOTAL: 150

DATA FOR PHYSICAL SCIENCES GRADE 12
PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12
VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure <i>Standaarddruk</i>	p^θ	$1,013 \times 10^5 \text{ Pa}$
Molar gas volume at STP <i>Molére gasvolume by STD</i>	V_m	$22,4 \text{ dm}^3 \cdot \text{mol}^{-1}$
Standard temperature <i>Standaardtemperatuur</i>	T^θ	273 K
Charge on electron <i>Lading op elektron</i>	e	$-1,6 \times 10^{-19} \text{ C}$
Avogadro's constant <i>Avogadro-konstante</i>	N_A	$6,02 \times 10^{23} \text{ mol}^{-1}$

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	$\text{pH} = -\log[\text{H}_3\text{O}^+]$
$K_w = [\text{H}_3\text{O}^+][\text{OH}^-] = 1 \times 10^{-14} \text{ at/by 298 K}$	
$E_{\text{cell}}^\theta = E_{\text{cathode}}^\theta - E_{\text{anode}}^\theta / E_{\text{sel}}^\theta = E_{\text{katode}}^\theta - E_{\text{anode}}^\theta$	
or/of $E_{\text{cell}}^\theta = E_{\text{reduction}}^\theta - E_{\text{oxidation}}^\theta / E_{\text{sel}}^\theta = E_{\text{reduksie}}^\theta - E_{\text{oksidasie}}^\theta$	
or/of $E_{\text{cell}}^\theta = E_{\text{oxidising agent}}^\theta - E_{\text{reducing agent}}^\theta / E_{\text{sel}}^\theta = E_{\text{oksideermiddel}}^\theta - E_{\text{reduseermiddel}}^\theta$	

TABLE 3: THE PERIODIC TABLE OF ELEMENTS

I		II		KEY																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
1	H	3	4	Atomic number		Relative atomic mass (approximately)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
2	Li	7	9	Electronegativity		29	Cu	63,5	Symbol																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	8010	8011	8012	8013	8014	8015	8016	8017	8018	8019	8020	8021	8022	8023	8024	8025	8026	8027	8028	8029	8030	8031	8032	8033	8034	8035	8036	8037	8038	8039	8040	8041	8042	8043	8044	8045	8046	8047	8048	8049	8050	8051	8052	8053	8054	8055	8056	8057	8058	8059	8060	8061	8062	8063	8064	8065	8066	8067	8068	8069	8070	8071	8072	8073	8074	8075	8076	8077	8078	8079	8080	8081	8082	8083	8084	8085	8086	8087	8088	8089	8090	8091	8092	8093	8094	8095	8096	8097	8098	8099	80100	80101	80102	80103	80104	80105	80106	80107	80108	80109	80110	80111	80112	80113	80114	80115	80116	80117	80118	80119	80120	80121	80122	80123	80124	80125	80126	80127	80128	80129	80130	80131	80132	80133	80134	80135	80136	80137	80138	80139	80140	80141	80142	80143	80144	80145	80146	80147	80148	80149	80150	80151	80152	80153	80154	80155	80156	80157	80158	80159	80160	80161	80162	80163	80164	80165	80166	80167	80168	80169	80170	80171	80172	80173	80174	80175	80176	80177	80178	80179	80180	80181	80182	80183	80184	80185	80186	80187	80188	80189	80190	80191	80192	80193	80194	80195	80196	80197	80198	80199	80200	80201	80202	80203	80204	80205	80206	80207	80208	80209	80210	80211	80212	80213	80214	80215	80216	80217	80218	80219	80220	80221	80222	80223	80224	80225	80226	80227	80228	80229	80230	80231	80232	80233	80234	80235	80236	80237	80238	80239	80240	80241	80242	80243	80244	80245	80246	80247	80248	80249	80250	80251	80252	80253	80254	80255	80256	80257	80258	80259	80260	80261	80262	80263	80264	80265	80266	80267	80268	80269	80270	80271	80272	80273	80274	80275	80276	80277	80278	80279	80280	80281	80282	80283	80284	80285	80286	80287	80288	80289	80290	80291	80292	80293	80294	80295	80296	80297	80298	80299	80300	80301	80302	80303	80304	80305	80306	80307	80308	80309	80310	80311	80312	80313	80314	80315	80316	80317	80318	80319	80320	80321	80322	80323	80324	80325	80326	80327	80328	80329	80330	80331	80332	80333	80334	80335	80336	80337	80338	80339</

TABLE 4A: STANDARD REDUCTION POTENTIALS
TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/Halfreaksies	E^θ (V)
$F_2(g) + 2e^- \rightleftharpoons 2F^-$	+ 2,87
$Co^{3+} + e^- \rightleftharpoons Co^{2+}$	+ 1,81
$H_2O_2 + 2H^+ + 2e^- \rightleftharpoons 2H_2O$	+1,77
$MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$	+ 1,51
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-$	+ 1,36
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightleftharpoons 2Cr^{3+} + 7H_2O$	+ 1,33
$O_2(g) + 4H^+ + 4e^- \rightleftharpoons 2H_2O$	+ 1,23
$MnO_2 + 4H^+ + 2e^- \rightleftharpoons Mn^{2+} + 2H_2O$	+ 1,23
$Pt^{2+} + 2e^- \rightleftharpoons Pt$	+ 1,20
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-$	+ 1,07
$NO_3^- + 4H^+ + 3e^- \rightleftharpoons NO(g) + 2H_2O$	+ 0,96
$Hg^{2+} + 2e^- \rightleftharpoons Hg(l)$	+ 0,85
$Ag^+ + e^- \rightleftharpoons Ag$	+ 0,80
$NO_3^- + 2H^+ + e^- \rightleftharpoons NO_2(g) + H_2O$	+ 0,80
$Fe^{3+} + e^- \rightleftharpoons Fe^{2+}$	+ 0,77
$O_2(g) + 2H^+ + 2e^- \rightleftharpoons H_2O_2$	+ 0,68
$I_2 + 2e^- \rightleftharpoons 2I^-$	+ 0,54
$Cu^+ + e^- \rightleftharpoons Cu$	+ 0,52
$SO_2 + 4H^+ + 4e^- \rightleftharpoons S + 2H_2O$	+ 0,45
$2H_2O + O_2 + 4e^- \rightleftharpoons 4OH^-$	+ 0,40
$Cu^{2+} + 2e^- \rightleftharpoons Cu$	+ 0,34
$SO_4^{2-} + 4H^+ + 2e^- \rightleftharpoons SO_2(g) + 2H_2O$	+ 0,17
$Cu^{2+} + e^- \rightleftharpoons Cu^+$	+ 0,16
$Sn^{4+} + 2e^- \rightleftharpoons Sn^{2+}$	+ 0,15
$S + 2H^+ + 2e^- \rightleftharpoons H_2S(g)$	+ 0,14
$2H^+ + 2e^- \rightleftharpoons H_2(g)$	0,00
$Fe^{3+} + 3e^- \rightleftharpoons Fe$	- 0,06
$Pb^{2+} + 2e^- \rightleftharpoons Pb$	- 0,13
$Sn^{2+} + 2e^- \rightleftharpoons Sn$	- 0,14
$Ni^{2+} + 2e^- \rightleftharpoons Ni$	- 0,27
$Co^{2+} + 2e^- \rightleftharpoons Co$	- 0,28
$Cd^{2+} + 2e^- \rightleftharpoons Cd$	- 0,40
$Cr^{3+} + e^- \rightleftharpoons Cr^{2+}$	- 0,41
$Fe^{2+} + 2e^- \rightleftharpoons Fe$	- 0,44
$Cr^{3+} + 3e^- \rightleftharpoons Cr$	- 0,74
$Zn^{2+} + 2e^- \rightleftharpoons Zn$	- 0,76
$2H_2O + 2e^- \rightleftharpoons H_2(g) + 2OH^-$	- 0,83
$Cr^{2+} + 2e^- \rightleftharpoons Cr$	- 0,91
$Mn^{2+} + 2e^- \rightleftharpoons Mn$	- 1,18
$Al^{3+} + 3e^- \rightleftharpoons Al$	- 1,66
$Mg^{2+} + 2e^- \rightleftharpoons Mg$	- 2,36
$Na^+ + e^- \rightleftharpoons Na$	- 2,71
$Ca^{2+} + 2e^- \rightleftharpoons Ca$	- 2,87
$Sr^{2+} + 2e^- \rightleftharpoons Sr$	- 2,89
$Ba^{2+} + 2e^- \rightleftharpoons Ba$	- 2,90
$Cs^+ + e^- \rightleftharpoons Cs$	- 2,92
$K^+ + e^- \rightleftharpoons K$	- 2,93
$Li^+ + e^- \rightleftharpoons Li$	- 3,05

Increasing oxidising ability/Toenemende oksiderende vermoë

Increasing reducing ability/Toenemende reduserende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS
TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/Halfreaksies	E^\ominus (V)
$\text{Li}^+ + \text{e}^- \rightleftharpoons \text{Li}$	- 3,05
$\text{K}^+ + \text{e}^- \rightleftharpoons \text{K}$	- 2,93
$\text{Cs}^+ + \text{e}^- \rightleftharpoons \text{Cs}$	- 2,92
$\text{Ba}^{2+} + 2\text{e}^- \rightleftharpoons \text{Ba}$	- 2,90
$\text{Sr}^{2+} + 2\text{e}^- \rightleftharpoons \text{Sr}$	- 2,89
$\text{Ca}^{2+} + 2\text{e}^- \rightleftharpoons \text{Ca}$	- 2,87
$\text{Na}^+ + \text{e}^- \rightleftharpoons \text{Na}$	- 2,71
$\text{Mg}^{2+} + 2\text{e}^- \rightleftharpoons \text{Mg}$	- 2,36
$\text{Al}^{3+} + 3\text{e}^- \rightleftharpoons \text{Al}$	- 1,66
$\text{Mn}^{2+} + 2\text{e}^- \rightleftharpoons \text{Mn}$	- 1,18
$\text{Cr}^{2+} + 2\text{e}^- \rightleftharpoons \text{Cr}$	- 0,91
$2\text{H}_2\text{O} + 2\text{e}^- \rightleftharpoons \text{H}_2(\text{g}) + 2\text{OH}^-$	- 0,83
$\text{Zn}^{2+} + 2\text{e}^- \rightleftharpoons \text{Zn}$	- 0,76
$\text{Cr}^{3+} + 3\text{e}^- \rightleftharpoons \text{Cr}$	- 0,74
$\text{Fe}^{2+} + 2\text{e}^- \rightleftharpoons \text{Fe}$	- 0,44
$\text{Cr}^{3+} + \text{e}^- \rightleftharpoons \text{Cr}^{2+}$	- 0,41
$\text{Cd}^{2+} + 2\text{e}^- \rightleftharpoons \text{Cd}$	- 0,40
$\text{Co}^{2+} + 2\text{e}^- \rightleftharpoons \text{Co}$	- 0,28
$\text{Ni}^{2+} + 2\text{e}^- \rightleftharpoons \text{Ni}$	- 0,27
$\text{Sn}^{2+} + 2\text{e}^- \rightleftharpoons \text{Sn}$	- 0,14
$\text{Pb}^{2+} + 2\text{e}^- \rightleftharpoons \text{Pb}$	- 0,13
$\text{Fe}^{3+} + 3\text{e}^- \rightleftharpoons \text{Fe}$	- 0,06
$2\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{H}_2(\text{g})$	0,00
$\text{S} + 2\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{H}_2\text{S}(\text{g})$	+ 0,14
$\text{Sn}^{4+} + 2\text{e}^- \rightleftharpoons \text{Sn}^{2+}$	+ 0,15
$\text{Cu}^{2+} + \text{e}^- \rightleftharpoons \text{Cu}^+$	+ 0,16
$\text{SO}_4^{2-} + 4\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{SO}_2(\text{g}) + 2\text{H}_2\text{O}$	+ 0,17
$\text{Cu}^{2+} + 2\text{e}^- \rightleftharpoons \text{Cu}$	+ 0,34
$2\text{H}_2\text{O} + \text{O}_2 + 4\text{e}^- \rightleftharpoons 4\text{OH}^-$	+ 0,40
$\text{SO}_2 + 4\text{H}^+ + 4\text{e}^- \rightleftharpoons \text{S} + 2\text{H}_2\text{O}$	+ 0,45
$\text{Cu}^+ + \text{e}^- \rightleftharpoons \text{Cu}$	+ 0,52
$\text{I}_2 + 2\text{e}^- \rightleftharpoons 2\text{I}^-$	+ 0,54
$\text{O}_2(\text{g}) + 2\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{H}_2\text{O}_2$	+ 0,68
$\text{Fe}^{3+} + \text{e}^- \rightleftharpoons \text{Fe}^{2+}$	+ 0,77
$\text{NO}_3^- + 2\text{H}^+ + \text{e}^- \rightleftharpoons \text{NO}_2(\text{g}) + \text{H}_2\text{O}$	+ 0,80
$\text{Ag}^+ + \text{e}^- \rightleftharpoons \text{Ag}$	+ 0,80
$\text{Hg}^{2+} + 2\text{e}^- \rightleftharpoons \text{Hg}(\ell)$	+ 0,85
$\text{NO}_3^- + 4\text{H}^+ + 3\text{e}^- \rightleftharpoons \text{NO}(\text{g}) + 2\text{H}_2\text{O}$	+ 0,96
$\text{Br}_2(\ell) + 2\text{e}^- \rightleftharpoons 2\text{Br}^-$	+ 1,07
$\text{Pt}^{2+} + 2\text{e}^- \rightleftharpoons \text{Pt}$	+ 1,20
$\text{MnO}_2 + 4\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{Mn}^{2+} + 2\text{H}_2\text{O}$	+ 1,23
$\text{O}_2(\text{g}) + 4\text{H}^+ + 4\text{e}^- \rightleftharpoons 2\text{H}_2\text{O}$	+ 1,23
$\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{e}^- \rightleftharpoons 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$	+ 1,33
$\text{Cl}_2(\text{g}) + 2\text{e}^- \rightleftharpoons 2\text{Cl}^-$	+ 1,36
$\text{MnO}_4^- + 8\text{H}^+ + 5\text{e}^- \rightleftharpoons \text{Mn}^{2+} + 4\text{H}_2\text{O}$	+ 1,51
$\text{H}_2\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \rightleftharpoons 2\text{H}_2\text{O}$	+ 1,77
$\text{Co}^{3+} + \text{e}^- \rightleftharpoons \text{Co}^{2+}$	+ 1,81
$\text{F}_2(\text{g}) + 2\text{e}^- \rightleftharpoons 2\text{F}^-$	+ 2,87

Increasing oxidising ability/Toenemende oksiderende vermoë

Increasing reducing ability/Toenemende reduuserende vermoë

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

PHYSICAL SCIENCES: CHEMISTRY (P2)

JUNE EXAMINATION

MARKING GUIDELINE

2020

**NATIONAL
SENIOR CERTIFICATE**

GRADE 12

Time: 3 hours

Marks: 150

NB. This marking guideline consists of 9 pages.

QUESTION 1

1.1 D✓✓ (2)
1.2 B ✓✓ (2)
1.3 C ✓✓ (2)
1.4 C✓✓ (2)
1.5 B✓✓ (2)
1.6 B✓✓ (2)
1.7 C ✓✓ (2)
1.8 A✓✓ (2)
1.9 D✓✓ (2)
1.10 C ✓✓ (2)

[20]**QUESTION 2**

2.1.1 E✓ (1)
2.1.2 B and F✓✓ (2)
2.1.3 G✓ (1)
2.1.4 F✓ ✓ ✓ (1)
2.2.1 1-bromo-2,2-dichloroethane (2)
2.2.2 hexanal✓✓ (2)
2.2.3 2-propanol/propan-2-ol✓ (1)
2.2.4 Carboxyl group✓✓ (2)
2.2.5 C_nH_{2n}✓✓ (2)
2.3. C✓ (1)
2.4 Condensation polymerization. ✓
Molecules of two monomers with different functional groups undergo condensation reactions with the loss of small molecules, usually water. ✓✓ (3)

[18]

QUESTION 3

3.1 The temperature at which the solid and liquid phases of a substance are at equilibrium. ✓✓ (2)

3.2.1 Compound A, ethane has only weak London forces between the molecules. ✓

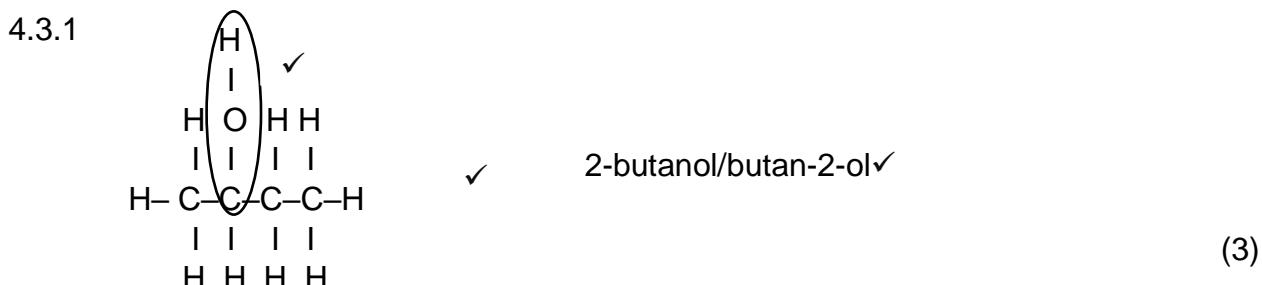
Compound B, chloroethane has weak London forces and dipole-dipole forces between the molecules. ✓

Since compound B has stronger intermolecular forces than compound A, compound B has a higher boiling point. ✓ (3)

3.2.2 Compound C, ethanol, has strong hydrogen bonds in addition to dipole-dipole forces and weak London forces are between the molecules. ✓

Compound D, ethanoic acid has very strong hydrogen bonds (2 sites for hydrogen bonding) in addition to dipole-dipole forces and weak London forces (induced dipole forces) are between the molecules. ✓

Since compound D has stronger intermolecular forces than compound C, compound D has a higher melting point. ✓ (3)


3.3 The higher the boiling point, the lower the vapour pressure. ✓✓ (2)

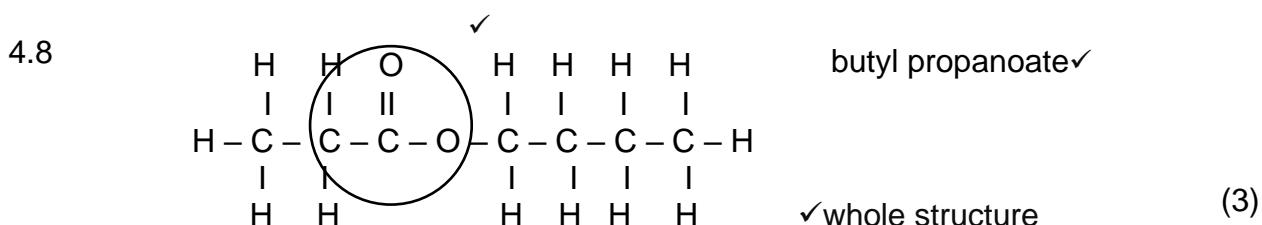
[10]

QUESTION 4

4.2.1 Br_2 ✓
Heat/ UV light✓ (2)

4.2.2 Concentrated strong base(NaOH/KOH) in ethanol✓
Heat strongly under reflux✓ (2)

4.3.2 Alcohols✓ (1)


4.3.3 secondary✓
The OH group is joined to the carbon atom that is bonded to two other carbons✓ (2)

4.3.4 Addition/hydration✓ (1)

4.5 Substitution✓ (1)

4.6 but-1-ene/1-butene✓✓ (2)

4.9 Esterification✓ (1)
[25]

QUESTION 5

5.1 Change in concentration of reactants or products per unit time. ✓✓ (2)

5.2 Temperature✓
Concentration✓ (any 2) (2)
Catalyst

5.3 Sulphur✓ (1)

5.4 What is the relationship between concentration and reaction rate? ✓✓ (2)

5.5 A✓✓ (2)

5.6 In experiment B:
The concentration of $\text{Na}_2\text{S}_2\text{O}_3$ (aq) is higher. /More $\text{Na}_2\text{S}_2\text{O}_3$ particles per unit volume. ✓
More particles with correct orientation✓
More effective collisions per unit time / Higher frequency of effective collisions. ✓ (3)

5.7 Rate of Reaction =
$$\frac{\Delta V}{\Delta t}$$

=
$$\frac{50 - 0}{125 - 0} \checkmark$$

=
$$0,4 \text{ cm}^3 \cdot \text{s}^{-1} \checkmark$$
 (3)

5.8

$$\begin{aligned}
 C &= \frac{m}{MV} \\
 &= \frac{100}{(158)(0,25)} \quad \checkmark \\
 &= 2.53 \text{ mol.dm}^{-3}
 \end{aligned}$$

$$\begin{aligned}
 n (\text{Na}_2\text{S}_2\text{O}_3 \text{ in D}) &= C \times V \quad \checkmark \\
 &= (2.53)(0,01) \quad \checkmark \\
 &= 0,025 \text{ mol}
 \end{aligned}$$

$$\begin{array}{l}
 n_s : n \text{ Na}_2\text{S}_2\text{O}_3 \\
 1 : 1 \quad \checkmark
 \end{array}$$

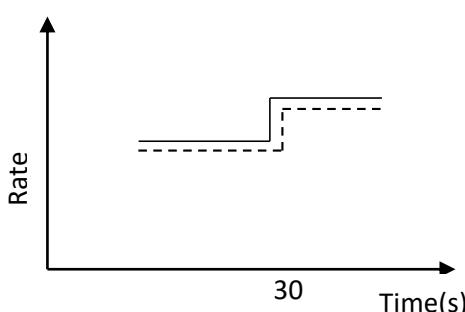
$$\begin{aligned}
 n_s &= \frac{m}{M} \\
 \checkmark \quad 0,025 &= \frac{m}{32} \quad \checkmark \quad (7) \\
 m &= 0,8 \text{ g} \quad \checkmark
 \end{aligned}$$

[22]

QUESTION 6

6.1.1 Homogenous. \checkmark
The reactants and products are all in the same phase. \checkmark (2)

6.1.2 $2\text{CO(g)} + 3\text{H}_2\text{(g)} \rightarrow 2\text{CH}_2\text{OH(g)}$ $\checkmark\checkmark$ (2)


6.1.3 Reactants are being used up to form products. \checkmark (1)

6.1.4 Exothermic \checkmark An increase in temperature favoured the endothermic reaction. $\checkmark\checkmark$ (3)

6.1.5 Equilibrium is reached. $\checkmark\checkmark$ / the rate of the forward reaction is equal to the rate of the reverse reaction. \checkmark (2)

6.1.6 Increases. \checkmark (1)

6.1.7

- \checkmark shape
- \checkmark two curves
- \checkmark axes
- \checkmark 30

(4)

6.2.1 When the equilibrium in a closed system is disturbed, the system will reinstate a new equilibrium by favouring the reaction that will oppose the disturbance.✓✓ (2)

6.2.2.1 Decrease✓ (1)

6.2.2.2 Increase✓ (1)

6.2.3

	SO ₂	O ₂	SO ₃
Ratio	2	1	2
Initial mole	0,3	x	0
Change in mole	0,2	0,1	0,2
Equilibrium Mole	0,1	x - 0,1	0,2
Equilibrium concentration	0,01	$\frac{x - 0,1}{10}$	0,02

$$K_c = \frac{[SO_3]^2}{[SO_2]^2[O_2]} \checkmark$$

$$15 \checkmark = \frac{(0,02)^2}{(0,01)^2 \left(\frac{x - 0,1}{10} \right)} \checkmark$$

$$x = 2,77 \text{ mol} \checkmark$$

$$n = \frac{m}{M}$$

$$2,77 = \frac{m}{32} \checkmark$$

$$m = 88,64 \text{ g} \checkmark$$

(8)

[27]

QUESTION 7

7.1 An acid is a substance that releases hydronium ions in solution. ✓✓ (2)

7.2

$$\frac{C_a V_a}{C_b V_b} = \frac{n_a}{n_b} \quad \checkmark$$

$$\checkmark \frac{(0,5)(15)}{C_b(12,5)} = \frac{2}{1} \quad \checkmark$$

$$C_b = 0,3 \text{ mol.dm}^{-3}$$

$$C = \frac{m}{MV}$$

$$0,03 = \frac{0,795}{M(0,25)} \quad \checkmark$$

$$M = 106 \text{ g.mol}^{-1} \quad \checkmark$$

$$106 = 2M_x + 12 + 3(16) \quad \checkmark$$

$$M_x = 23 \text{ g.mol}^{-1} \quad \checkmark$$

Therefore X is Na/Sodium✓

$$\begin{aligned} n(\text{HCl}) &= c \times V \quad \checkmark \\ &= (0,5)(0,015) \quad \checkmark \\ &= 0,0075 \text{ mol} \end{aligned}$$

$$n_{\text{HCl}} : n_{\text{X}_2\text{CO}_3}$$

$$2 : 1 \quad \checkmark$$

$$\begin{aligned} n_{\text{X}_2\text{CO}_3} &= \frac{0,0075}{2} \\ &= 0,00375 \text{ mol} \quad \checkmark \end{aligned}$$

$$n_{\text{X}_2\text{CO}_3} = \frac{m}{M}$$

$$0,00375 = \frac{0,798}{M} \quad \checkmark$$

$$M = 106 \text{ g.mol}^{-1}$$

$$106 = 2M_x + 12 + 3(16) \quad \checkmark$$

$$M_x = 23 \text{ g.mol}^{-1} \quad \checkmark$$

Therefore X is Na/Sodium✓

(8)

$$\begin{aligned} 7.3.1 \quad n(\text{NaHCO}_3) &= \frac{m}{M} \\ &= \frac{7}{84} \quad \checkmark \\ &= 0,083 \text{ mol} \end{aligned}$$

$$n(\text{NaHCO}_3) : n(\text{HCl})$$

$$1 : 2 \quad \checkmark$$

$$n(\text{HCl}) = 0,16 \text{ mol} \quad \checkmark$$

$$\begin{aligned} C &= \frac{n}{V} \quad \checkmark \\ 5 &= \frac{0,16}{V} \quad \checkmark \\ V &= 0,032 \text{ dm}^3 \\ &= 32 \text{ cm}^3 \quad \checkmark \end{aligned}$$

(6)

$$7.3.2 \quad (C_a V_a)_{\text{initial}} = (C_a V_a)_{\text{final}}$$

$$\checkmark \quad (5)V_a = (0,1)(1) \quad \checkmark$$

$$V_a = 0,02 \text{ dm}^3 \quad \checkmark$$

(3)

$$7.4.1 \quad M(\text{NaHCO}_3) = 23 + 1 + 12 + 3(16) = 84 \text{ g.mol}^{-1} \quad \checkmark$$

$$n = C \times V$$

$$= (0,052)(0,275) \quad \checkmark$$

$$= 0,0143 \text{ mol}$$

$$m = nM$$

$$= (0,0143)(84) \quad \checkmark$$

$$= 1,20 \text{ g} \quad \checkmark$$

$$\% \text{ Purity} = \frac{1,20}{3,68} \times \frac{100}{1} \quad \checkmark$$

$$= 32,61\% \quad \checkmark$$

(6)

$$7.4.2 \quad \text{pH} = -\log[\text{H}_3\text{O}^+] \quad \checkmark$$

$$= -\log(0,11) \quad \checkmark$$

$$= 0,96 \quad \checkmark$$

(3)

[28]

TOTAL: 150