

education

Department: Education PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 11

PHYSICAL SCIENCE: CHEMISTRY (P2)

COMMON TEST

-

MARCH 2020

MARKS: 50

18

18

TIME: 1 hour

This question paper consists of 5 pages and 2 data sheets.

INSTRUCTIONS AND INFORMATION

- 1. Write your name on the **ANSWER BOOK**.
- 2. Answer **ALL** the questions in the ANSWER BOOK.
- 3. This question paper consists of FOUR questions.
- 4. You may use a non-programmable calculator.
- 5. Number the answers correctly according to the numbering system used in this question paper.
- 6. You are advised to use the attached DATA SHEETS.
- 7. Give brief motivations, discussions et cetera where required.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question number (1.1 - 1.10) in the ANSWER BOOK, for example 1.5 D.

- 1.1 Which ONE of the following is a molecule with a multiple bond?
 - A N₂
 - B NH₃
 - C OF₂
 - D HOCł

(2)

1.2 The molecular formula of ethyne is C_2H_2 .

The shape of the ethyne molecule as predicted by the VSEPR theory is:

- A Trigonal planar.
- B Octahedral.
- C Llinear.
- D Bent.

(2)

1.3 The table below indicates the boiling points of four liquids.

SUBSTANCE	BOILING POINT (°C)
Water	100
Methylated spirits	78,5
Ethanol	78,37
Acetone	56

Which ONE of the above liquids has the lowest surface tension?

- A Water.
- B Methylated spirits.
- C Ethanol.
- D Acetone.

1.4 The predominant forces between the molecules in an ice crystal are called . . .

- A London forces.
- B Hydrogen bonding.
- C Induced dipole forces.
- D Polar covalent bonding.

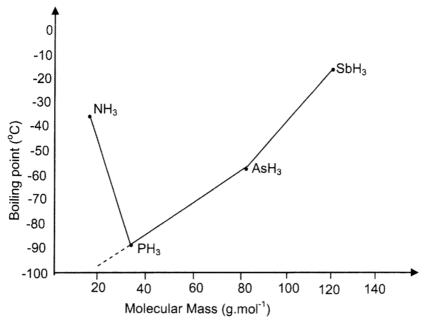
(2) [8]

(2)

[9]

QUESTION 2 (Start on a new page.)

The water molecule has the formula: H_2O .


Water forms a dative covalent bond with the hydrogen ion. 2.1

	2.1.1	What is a dative covalent bond?	(2)											
	2.1.2	State ONE requirement for the formation of a dative covalent bond.	(1)											
	2.1.3	Draw the Lewis structure to show the bonding that takes place when the above dative covalent bond is formed.	(2)											
	2.1.4	Name the ion that is formed from the above dative covalent bond.	(1)											
2.2		ter molecular is angular in shape. Explain this shape in terms of the R theory.	(3)											
2.3	The de	The density of ice is less than the density of the liquid.												
	2.3.1	Explain the significance of the above for life on EARTH.	(3)											
	2.3.2	Calculate the number of water molecules present in 1 dm ³ of water if the mass of 1 cm ³ of water is 1 g.	(3) [15]											
QUE	STION 3	(Start on a new page.)												
		gth of the H – Br bond is 60 pm. of energy is required to break the H – Br bond.												
3.1	Define	the term <i>bond length.</i>	(2)											
3.2	energy	sketch graph (not to scale) in your answer book to show how potential changes as the distance between the nuclei changes when a hydrogen m approaches a bromine (Br) atom.												
	Indicate the following values on the graph:													
	(i)	Bond length.												
	(ii)	Bond energy.	(5)											
3.3		II the bond length of an H - Cł bond compare to that of the H – Br bond? own LONGER THAN, EQUAL TO or SHORTER THAN.	(1)											
3.4	Give a	reason for the answer to question 3.3.	(1)											

Give a reason for the answer to question 3.3. 3.4

QUESTION 4 (Start on a new page.)

The graph below shows the results obtained during an investigation to determine the boiling points of substances formed when hydrogen is bonded to atoms from group V of the periodic table.

4.1	Define	boiling	point.
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	p 0

1	2	١
١	<b>.</b>	/

(2)

(3)

(2)

(3)

(4)

4.2 Write down an investigative question for this investigation.

4.3 Consider PH₃, AsH₃ and SbH₃.

4.3.1	Name the type of van der Waals forces that exist between molecules of
	PH ₃ . Explain the answer by referring to the shape and polarity of the
	molecule.

4.3.2 Which of the three substances has the highest vapour pressure? Give a reason for the answer.

#### 4.3.3. Fully explain why SbH₃ has a higher boiling point than $AsH_3$ .

- 4.4 It is expected that from the trend shown in the above graph, the boiling point of NH₃ should fall along the dotted line.
   Explain, with reference to the TYPE OF INTERMOLECULAR FORCES AND ENERGY, why the boiling point of NH₃ does not fall along the dotted line.
- 4.5 The SAME INVESTIGATION is now conducted when the atmospheric pressure is LOWERED. What effect will this have on:

4.5.1	The vapour pressure of NH ₃ ?	(1)
4.5.2	The boiling point of NH ₃ ?	(1)
	(Change from INCREASES, DECREASES of DEMAINS THE SAME !	

(Choose from INCREASES, DECREASES or REMAINS THE SAME in each case):

[18]

TOTAL MARKS: 50

#### DATA FOR PHYSICAL SCIENCES GRADE 11 PAPER 2 (CHEMISTRY)

#### GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 11 VRAESTEL 2 (CHEMIE)

#### TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Avogadro's constant Avogadro-konstante	NA	6,02 x 10 ²³ mol ⁻¹
Molar gas constant Molêre gaskonstante	R	8,31 J·K ⁻¹ ·mol ⁻¹
Standard pressure Standaarddruk	p ^e	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	Vm	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τ°	273 K

#### TABLE 2: FORMULAE/TABEL 2: FORMULES

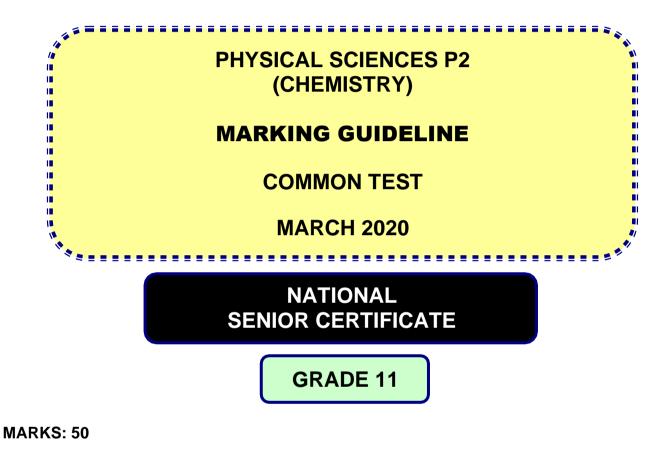
$\frac{\mathbf{p}_1 \mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{p}_2 \mathbf{V}_2}{\mathbf{T}_2}$	pV=nRT
$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$n = \frac{V}{V_m}$	$c = \frac{n}{V}$ OR/OF $c = \frac{m}{MV}$

												<b></b>			······							<b>,</b>									
	18	(IIII)	8	He	4	10	Ne	20	18	Ar	40	36	Ŗ	84	54	Xe	131	86	Rn			74		175	103	<u>د</u>	ī				
	17					6	<b>⊥⊥</b> 0Ԡ	19	17	<b>у</b> 0'г		35	8,S Br		53	 5'2		85	a,s At			70	Å Å	173	102	CN N					
	16	ک				œ	<b>O</b> 3'2	16	16	<b>လ</b> 5'2		34	2,4 Ze		52		128	84	-	)		bу	H R	169	101	C M					
	15	ε				7	<b>Z</b> 0'E	14	15	۲,2 ۳		33	2, AS		51	-		83	6'I	209		68	Ъ	167	100	E L					
	14	5					<b>ں</b> ۶'2	12	14			32	8,1 Ge		50		119	82	-	207		67	C H	165	66	и Ц	2				
) TE	13	(III)					۵'2	11	13	۲,5 ۲,5 ۳,5	27	31	1,6 7,6	70	49	<mark>ے</mark> ۲'۲	115	81	8,1 9 1 6	204		66	2	163	98	Ċ,	5				
EMENTS	12											30	9't	65	48	Cd 7,7	112	80	_			65	q	159	97	Bk	i				
TABLE 3: THE PERIODIC TABLE OF ELEMENTS         TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE	11											29	0,1 9,1	63,5	47	^{6,↑}	108	79	Au	197	T	64	Ъд	157	96	Cm	,				
	10					getal					Symbol	Simbool			: mass	massa	28	<b>ï</b> 8'↓	59	46	5,2 2,2	106	78	đ	195		63	Ц	152	95	Am
RIODIC	6		number ngetal	umber getal			getal	getal		[	Sy	,			Approximate relative atomic mass	atoom	27	8,1 8,1	59	45	s,2 Bh	103	77	<u> </u>	192		62	Sm	150	94	Pu
THE PE VIE PERI	œ		Atomic n Afoom	Atoomgetal	29	-,9 Cu 63,5		<b>4</b>	relative	benaderde relatiewe atoommassa	26	8,1 Fe	56	44	2,2 Ru	101	76	Os	190		61	Pm		93	aN	<u>.</u>					
VBLE 3: EL 3: D	7	•	¥			vity viteit				oximate	derde r	25	U S,1,5	55	43	6'≀		75	Re	186		09	PN	144	92		238				
TA TAB	9		EUTEL			Electronegativity	onegati	Elektronegatiwiteit			Appr	Bena		<u>ه،</u> ۱	52	42	8'1 0	96	74	3	184		59	Ъ	141	91	Pa				
	5		<b>KEY/SLEUTEL</b>	KEY/S				Electi	Elektra					23	9'L	51	41	qN	92	73	Ta	181		58	Ce C	140	60	Ч	232		
	4																<b>۲</b> ۲'۲	48		<b>1</b> ,4	91	72	<b>₩</b> 9'₽	179							
	e											21	SC SC	45		<b>≻</b>	89	57	La	139	89	Ac									
	7	(II)					Be Be	6		BM Zʻ≀	24	20	_	40	38		88	56	<b>Ba</b> 6'0	137	88	6'0	077								
	<del>-</del> (	•	-	<b>T</b>	-	ຕ່		~			23	19		39	37	-	86	55	S S Z'0	133	87	<u>لاً</u> لاً									
			•		·ł-			l.															]								

Copyright reserved

March 2020 Common Test

-


7 NSC – Grade 11

Physical Science/P2



# education

Department: Education PROVINCE OF KWAZULU-NATAL



TIME: 1 hour

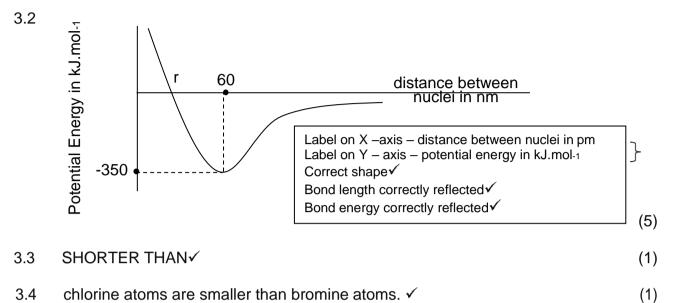
N.B: This marking guideline consists of 3 pages.

Please Turn Over

#### **QUESTION 1**

	A ✓✓ C ✓✓	(2)
	D√√	(2)
1.4	B√√	(2) [8]

### **QUESTION 2**


2.1	2.1.1 the bond formed when an empty valence shell shares a lone pair of electrons from another atom.√											
	2.1.2 one atom must have a lone pair of electrons while the other atom must have an empty valence shell.	(1)										
	<ul> <li>2.1.3 (H H:O:* H) +</li> <li>• 2 lone pairs and 2 shared pairs ✓</li> <li>• positively charged ✓</li> </ul>	(2)										
	2.1.4 hydronium ion/oxonium ion $\checkmark$	(1)										
2.2	the central atom has 2 lone pairs and 2 bonded pairs $\checkmark$ lone pairs repel each other and the bonded pairs more strongly than the bond pairs repel each other $\checkmark$ decreasing the bond angle $\checkmark$	(3)										
2.3	<ul> <li>2.3.1 Ice will float on water. ✓</li> <li>Bottom layer will not freeze. ✓</li> <li>Thus sustaining the aquatic life. ✓</li> </ul>	(3)										
	2.3.2 1000 g = 1 dm ₃											
	$n = \frac{m}{RM}$											
	$=\frac{1000g}{18}$											
	= 55,55 mol.											
	No. of molecules = 55,55 x NA $\checkmark$											
	= 3,34 x 10 ₂₅ √	[35]										

Please Turn Over

[9]

#### **QUESTION 3**

3.1 the average distance between the nuclei of two bonded atoms.  $\checkmark \checkmark$  (2 or 0) (2)



#### **QUESTION 4**

4.1	the temperature at which the vapour pressure of a substance equals the atmospheric pressure. $\checkmark\checkmark$ (2 or 0)	(2)
4.2	What is the relationship between molecular mass and boiling point? $\checkmark\checkmark$ (of the hydrides of the group V elements)	(2)
4.3.1	Dipole-dipole forces. ✓ Molecular shape is trigonal pyramidal ✓ (one lone pair). Molecule is polar.✓	(3)
4.3.2	$PH_{3}\checkmark$ has the lowest boiling point $\checkmark$	(2)
4.3.3	As the relative molecular mass increases, the size of the atom increases forming stronger dipoles. ✓ Strength of the intermolecular forces increases. ✓ More energy required to overcome the intermolecular forces ✓	(3)
4.4	Hydrogen bonding between molecules of NH ₃ . ✓ Dipole-dipole forces between molecules of PH ₃ , ASH ₃ and SbH ₃ . ✓ Intermolecular forces therefore unusually stronger between NH ₃ molecules. ✓ More energy required to overcome the intermolecular forces in NH ₃ . ✓	(4)
4.5.1	Remains the same ✓	(1)
4.5.2	Increases√ TOTAL MARKS	(1) <b>S: 50</b>