PHYSICAL SCIENCES: CONTROL TEST (P2)
MARCH 2018
MEMORANDUM

This memorandum consists of 6 pages
QUESTION 1

1.1 A ✓ ✓ (2)
1.2 C ✓ ✓ (2)
1.3 C ✓ ✓ (2)

[6]

QUESTION 2

2.1
2.1.1 B ✓ (1)
2.1.2 E ✓ (1)
2.1.3 A ✓ (1)
2.1.4 G ✓ (1)

2.2
2.2.1 2-bromo-3-chloro-4-methylpentane

Marking criteria:
- Correct stem i.e. pentane ✓
- All substituents (chloro, bromo and methyl) correctly identified ✓
- Substituents correctly numbered, in alphabetical order, hyphens and commas correctly used ✓

2.2.2 2-methyl propan-1-ol ✓

Notes
IF:
2 methylpropan 1 ol ½

2.2.3 ANY ONE:

2.3
2.3.1 Compounds with the same molecular formula ✓ but different positions of the functional groups / side chain/substituents on parent chain ✓
2.3.2

Marking criteria:
- Whole structure correct: $\frac{2}{2}$
- Only functional group correct $\frac{1}{2}$

Notes:
- If two or more functional groups $\frac{1}{2}$
- Condensed or semi-structural formula: Max $\frac{1}{2}$
- Molecular formula: $\frac{0}{2}$

2.4.1 Esterification (reaction) ✓

2.4.2 pentyl ✓ propanoate ✓

[17]

QUESTION 3

3.1 The temperature at which the vapour pressure of a substance equals atmospheric pressure ✓ ✓

3.2 London forces /Dispersion forces /Induced dipole forces ✓

3.3
- Between molecules of compound A are hydrogen bonds ✓ and London forces /Dispersion forces /induced dipole forces
- Between molecules of compound B are dipole-dipole ✓ forces and London forces
- Intermolecular forces in compound A are stronger ✓ than in B

OR
- Intermolecular forces in compound B are weaker than in A

(3)
3.4

\[
n = \frac{m}{M} \quad \checkmark
\]
\[
= \frac{12.8}{16} \quad \checkmark
\]
\[
= 0.8 \text{mol} \quad \checkmark
\]

\[
n_{\text{CH}_4} : n_{\text{Cl}_2} = 1:1 : n_{\text{CH}_2,\text{Cl}} = 0.8 \text{mol}
\]

\[
m_{\text{Cu}} = n \times M \quad \checkmark
\]
\[
= 0.8 \times 50.5 \quad \checkmark
\]
\[
= 40.4 \text{g} \quad \checkmark
\]

\[
\% \text{yield} = \frac{35}{40.4} \times 100 \quad \checkmark
\]
\[
= 86.63\% \quad \checkmark
\]

Marking criteria

- Formula: \(n = \frac{m}{M} \) \(\checkmark \)
- 0.8 mol \(\checkmark \)
- Substitution of 50.5g \(\checkmark \)
- Percentage calculation \(\checkmark \)
- Answer: 86.63% \(\checkmark \)

QUESTION 4

4.1 Elimination \(\checkmark \)

4.2 Alkenes \(\checkmark \)

4.3 Addition /Hydrohalogenation /hydrobromination \(\checkmark \)

4.4

![Chemical Reaction Diagram]

Notes

- Condensed/semi-structural formulae or mixture of both: -1 mark
- All bonds shown, one or more H-atoms omitted: -1 mark per structure
- Everything correct, wrong balancing: -1 mark
- Any other reactants or products: -1 mark

[11]
4.5

\[
\begin{align*}
\text{H} & \quad \text{C} & \quad \text{C} & \quad \text{C} & \quad \text{C} & \quad \text{H} \\
\text{H} & \quad \text{H} & \quad \text{Br} & \quad \text{H}
\end{align*}
\]

\(2\)-bromobutane \(\checkmark\)

Notes
- Condensed/semi-structural formulae or mixture of both: -1 mark
- All bonds shown, one or more H-atoms omitted: -1 mark per structure
- No hypen in the name: -1 mark

4.6 Substitution \(\checkmark\)

4.7 Cracking \(\checkmark\)

Accept: elimination

4.8 Addition \(\checkmark\) (polymerisation)

4.9

\[
\begin{align*}
n \text{H} - & \text{C} = \text{C} - \text{H} & \rightarrow & \left\{ \begin{array}{c}
\text{H} \\
\text{H} \\
\text{H}
\end{array} \right\} \\
\text{H} & \quad \text{H} & \quad \text{H}
\end{align*}
\]

Notes
- Condensed/semi-structural formulae or mixture of both: -1 mark
- All bonds shown, one or more H-atoms omitted: -1 mark per structure
- Letter n omitted per structure: -1 mark

TOTAL: 50
ANALYSIS GRID

<table>
<thead>
<tr>
<th>Question No.</th>
<th>Content</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Organic reaction</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Physical properties</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Organic reaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Homologous series</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Functional groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Homologous series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Homologous series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.2.1</td>
<td>IUPAC naming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2.2.2</td>
<td>IUPAC naming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Functional groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Isomerism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Isomerism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Application of organic chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.4.2</td>
<td>IUPAC naming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Physical properties</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3.2</td>
<td>Physical properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3.3</td>
<td>Physical properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3.4</td>
<td>Stoichiometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4.1.</td>
<td>Organic reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4.2.</td>
<td>Organic reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4.3</td>
<td>Organic reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4.4</td>
<td>Organic reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>4.5</td>
<td>Organic reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4.6</td>
<td>Organic reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4.7</td>
<td>Organic reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4.8</td>
<td>Plastics and polymers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4.9</td>
<td>Plastics and polymers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td></td>
<td>10</td>
<td>17</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Expected marks(policy)</td>
<td></td>
<td>10</td>
<td>17.5</td>
<td>15</td>
<td>7.5</td>
<td>50</td>
</tr>
<tr>
<td>Actual %</td>
<td></td>
<td>20%</td>
<td>34%</td>
<td>28%</td>
<td>18%</td>
<td>100%</td>
</tr>
<tr>
<td>Expected(policy) %</td>
<td></td>
<td>20%</td>
<td>35%</td>
<td>30%</td>
<td>15%</td>
<td>100%</td>
</tr>
</tbody>
</table>