PHYSICAL SCIENCES
 MARCH CONTROLLED TEST
 GRADE 11
 2018

MARKS : 75

TIME : 1.5 Hrs

INSTRUCTIONS AND INFORMATION

1. Write your NAME and CLASS in your ANSWER BOOK.
2. This question paper consists of SIX questions. Answer ALL questions.
3. Start each question on a new page.
4. Number the answers according to the numbering system used in this question paper.
5. You may use a non-programmable calculator.
6. You may use appropriate mathematical instruments.
7. You are advised to use the attached DATA SHEETS.
8. Show ALL formulae and substitutions in ALL calculations.
9. Round-off your FINAL numerical answers to a minimum of TWO decimal places.
10. Write neatly and legibly.

QUESTION 1: MULTIPLE CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter ($A-D$) next to the question number (1.1-1.5) in the ANSWER BOOK. For example 1.11 D.
1.1 Vector \mathbf{Z} and $\mathbf{- Z}$ are acting on a common point \mathbf{O}. The angle between the two vectors is...

A 270°
B 180°
C $\quad 90^{\circ}$
D $\quad 0^{\circ}$
1.2 A constant net force acts on a trolley moving in a straight line. Which one of the following physical quantities will remain constant?

A acceleration
B displacement
C kinetic energy
D velocity
1.3 The best explanation why a driver and passengers should wear a seatbelt is ...

A Newton's First law

B Newton's Second law
C Newton's Third law
D Newton's Universal Gravitation law
1.4 Which ONE of the bonds between the atoms below has the highest polarity?

A $\mathrm{H}-\mathrm{C}$
B $\quad \mathrm{H}-\mathrm{Cl}$
C $\quad \mathrm{H}-\mathrm{O}$
D $\mathrm{H}-\mathrm{N}$
1.5 The shape of the molecule in which the central atom is surrounded by two lone pairs and two bonding pairs is ...

A trigonal planar
B tetrahedral
C angular
D linear

QUESTION 2

The diagram below shows FOUR forces of $\mathbf{2 N} ; \mathbf{3 N} ; \mathbf{4} \mathbf{N}$ and $\mathbf{5 N}$ acting on an object on the same plane. The $\mathbf{2 N}$ is 30° anticlockwise from the x-axis. The diagram is not drawn to scale.

2.1 Define the term resultant force.

2.2 Calculate the magnitude of the resultant of all the:
2.2.1 horizontal forces acting on the object.
2.2.2 vertical forces acting on the object.
2.2.3 forces acting on the object.

QUESTION 3

A tow truck is towing a car using an inelastic steel cable (of negligible mass) as shown in the diagram below.

The steel cable forms an angle of 30° with the horizontal.

Mass of car $=1100 \mathbf{k g} \quad$ Mass of tow truck $=\mathbf{4 0 0 0} \mathbf{~ k g}$

The two vehicles move from rest on a straight, horizontal road to the right. The mass of the car is $1100 \mathbf{~ k g}$ and the mass of the tow truck is $\mathbf{4 0 0 0} \mathbf{~ k g}$. The tow truck's engine applies a force of $\mathbf{1 5 0 0 0} \mathbf{N}$. A constant frictional force of $\mathbf{1 4 5 6} \mathbf{N}$ is acting on the car and a constant frictional force of $\mathbf{4 5 2 0} \mathbf{N}$ is acting on the tow truck respectively.

3.1 State Newton's Second Law of motion, in words.

3.2 Draw a labelled, free-body diagram of all the forces acting on the car.
3.3 Calculate the:
3.3.1 acceleration of the car.
3.3.2 magnitude of the tension \mathbf{T} in the cable.
3.5 Using equations of motion, calculate the distance that the car will
travel in $\mathbf{4 s}$.
3.6 State Newton's First Law of motion, in words.
3.7 Use Newton's laws of motion to explain why towing can be dangerous.
3.8 If the force of horizontal tension in the cable, from the car on the truck is 1890 N, what is the horizontal force of the truck on the car?

Explain with reference to the relevant scientific principles.

QUESTION FOUR

Two blocks, of mass $\mathbf{8 k g}$ and $\mathbf{4} \mathbf{~ k g}$ respectively, are joined with an inelastic string of negligible mass. The string runs over a frictionless pulley. The $\mathbf{8 k g}$ block is on a horizontal surface while the 4 kg block is on an inclined plane of 40° with the horizontal. The coefficient of kinetic friction for both blocks is $\mathbf{0 , 2}$. The $\mathbf{4} \mathbf{~ k g}$ block accelerates down the slope.

The tension in the string is \mathbf{T}

4.1 Calculate the frictional force between the surface and the $\mathbf{4} \mathbf{~ k g}$ block.
4.2 Calculate the magnitude of the tension \mathbf{T} in the string.
4.2 How will the acceleration compare if the positions of the $\mathbf{8} \mathbf{~ k g}$ block and the $\mathbf{4 k g}$ block are switched?
Write down only GREATER THAN, LESS THAN or THE SAME. Explain the answer.

QUESTION 5

Gravitational force exists between the Sun and the Earth.
5.1 State Newton's Law of Universal Gravitation, in words.
5.2 The mass of the Sun is $\mathbf{2 5 0} \mathbf{0 0 0}$ times greater than that of the Earth.

The distance between the centers of the sun and the Earth is $\mathbf{1 , 2 7} \times \mathbf{1 0}^{\mathbf{9}} \mathbf{~ m}$.
Calculate the gravitational force that the sun exerts on the Earth.
5.3 How will the gravitational force that the Earth exerts on the sun compare to the answer to QUESTION 5.2?

Write only GREATER THAN, LESS THAN or EQUAL TO.
Give a reason for your answer.

QUESTION 6

6.1 Define the term electronegativity.
6.2 Study the following molecules and answer the questions that follow:
$\begin{array}{cll}\mathrm{CH}_{4} & \mathrm{CO}_{2} & \mathrm{H}_{2} \mathrm{O}\end{array}$

For each molecule
6.2.1 Provide the shape.
6.2.2 Draw the Lewis diagram
6.2.3 State whether each molecule is polar or non-polar.
6.3 Write down the type of intermolecular forces that exists between water molecules?

TOTAL $=75$

4.2 Information sheets - Paper 1 (Physics)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Acceleration due to gravity Swaartekragversnelling	g	$9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$
Gravitational constant Swaartekragkonstante	G	$6,67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg}{ }^{-2}$
Radius of Earth Straal van Aarde	R_{E}	$6,38 \times 10^{6} \mathrm{~m}$
Coulomb's constant Coulomb se konstante	k	$9,0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}$
Speed of light in a vacuum Spoed van lig in 'n vakuum	c	$3,0 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
Charge on electron Lading op elektron	m	$-1,6 \times 10^{-19} \mathrm{C}$
Electron mass Elektronmassa	M	$9,11 \times 10^{-31} \mathrm{~kg}$
Mass of the Earth Massa van die Aarde	$5,98 \times 10^{24} \mathrm{~kg}$	

TABLE 2: FORMULAE/TABEL 2: FORMULES
MOTION/BEWEGING

$v_{f}=v_{i}+a \Delta t$	$\Delta x=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}$
$v_{f}{ }^{2}=v_{i}{ }^{2}+2 a \Delta x$	$\Delta x=\left(\frac{v_{f}+v_{i}}{2}\right) \Delta t$

FORCE/KRAG

$F_{\text {net }}=m a$	$w=m g$
$F=\frac{G m_{1} m_{2}}{r^{2}}$	$\mu_{s}=\frac{f_{s(m a x)}}{N}$
$\mu_{k}=\frac{f_{k}}{N}$	

