PHYSICAL SCIENCES GRADE 10 P1 JUNE 2016 PRE-TEST MEMO

QUESTION 1

QUESTION 2	
1.10 D√√	[20]
1.9 B√√	
1.8 B√√	
1.7 B√√	
1.6 A√√	
1.5 D√√	
1.4 B√√	
1.3 A√√	
1.2 D√√	
1.1 B√√	

- 2.1.1 It is the maximum displacement of the particles ✓ of the medium from the equilibrium(mean) position / state ✓.
- 2.1.2 $A_A = 4 \times 0.5 \text{ m} = 2 \text{ cm} \checkmark$

 $A_B = 7 \times 0.5 \text{ cm} = 3.5 \text{ cm}$

2.1.3
$$v_a = \frac{\Delta x}{\Delta t} = \frac{6 \times 0.5 \ cm}{3 \ s} \checkmark = 1 \ cm. \ s^{-1} \checkmark$$

$$v_B = \frac{\Delta x}{\Delta t} = \frac{9 \times 0.5 \, cm}{3s} \quad \checkmark = 1.5 \, cm. \, s^{-1} \quad \checkmark \tag{4}$$

2.1.4

Mark allocation: correct amplitude ✓ joined amplitude in negative direction (underneath the line) ✓

(2)

(2)

(2)

2.1.5	Destructive interference \checkmark	(1)
2.2.1	Area 1 🗸	(1)

2.2.2 Area 2 ✓. The amount of waves per second (frequency) is more ✓ than those at area1

$$= 6.63 \times 10^{-34} \times 900 \times 10^{6}$$

(1)

(2)

(3)

$$= 5.97 \times 10^{-25} \text{ J} \checkmark$$

2.3.2 Higher frequencies of electromagnetic radiation means higher penetration ability ✓ of electromagnetic waves and a higher probability that the radiation would affect a person (through destroying molecular compound in the body). The scientist allege that the frequency of electromagnetic radiation from cell phones are to low to to have a considerable penetration ability ✓.

[21]

QUESTION 3

3.1

$$3.1.1 v = \frac{\Delta x}{\Delta t} = \frac{200 \checkmark}{0.08 \checkmark} = 2500 m s^{-1} \quad \checkmark \tag{3}$$

- 3.1.2 $v = \frac{\Delta x}{\Delta t} \checkmark$ $t = \frac{\Delta x}{v} = \frac{200}{340} \checkmark = 0,59s \checkmark$ (3)
- 3.1.3 Longer ✓

3.2

- 3.2.1 Longitudinal $\checkmark\checkmark$ (2)
- 3.2.2 A, C or E (any one) $\checkmark\checkmark$ (2)
- 3.2.3 Rare fraction $\sqrt{\sqrt{}}$ (2)

3.2.4 A and C or C and E or B and D or D and F \checkmark (2)

 $3.2.5 (6-2) = 4 \text{ cm or } 0.04 \text{ m } \sqrt{4}$ (2)

3.2.6
$$v = f \times \lambda \checkmark$$

 $f = \frac{v}{\lambda} = \frac{343}{0.04} \checkmark = 8575 \text{Hz} \checkmark$ (3)

P1 Page 2 of 6 Physical sciences Grade 10 MEMO P1 Pre-June Test 2016 Sekhukhune District Apel Cluster

3.3

3.3.1 <u>Acceleration of charged particles</u>. $\sqrt{\sqrt{}}$ (2)

3.3.2 (a) Gamma rays√ (1)

(b) Microwaves√

3.3.3 Any one ✓✓

(2)

- That have different speeds ($light \ 3 \times 10^8 ms^{-1}$) or about 340 ms^{-1} sound in air
- Travel through vacuum but not sound.
- Transverse waves but sound is longitudinal.

[27]

(1)

QUESTION 4

4.1.1	A transverse wave as a succession of transverse pulses $\checkmark\checkmark$	
	Or A transverse wave is a wave where the movement of the particles of the	
	medium is perpendicular \checkmark (at a right angle) to the direction of propagation	(2)
	of the wave.√	

- 4.1.2 They have the same amplitude. \checkmark (1)
- 4.1.3 They have different frequencies ✓ The blue light has a higher frequency (2) than the red light. ✓ or the wavelenght of blue light is smaller than the wavelength of red light

4.1.4
$$f = \frac{1}{p} \text{ or } f = \frac{1}{T} \checkmark$$

 $T = \frac{1}{4 \times 10^{12}} \checkmark = 2,5 \times 10^{-13} \text{ s} \checkmark$
(3)

- 4.1.5 $v = f\lambda \checkmark$ = 4 x 10¹² \checkmark x 0,7 x 10⁻⁶ \checkmark (4) = 2,8 x 10⁶ m·s⁻¹ \checkmark
- 4.2.1 when a wave encounters a boundary between two media, \checkmark part of the (2) wave is reflected, part is absorbed and part is transmitted \checkmark
- 4.2.2 If is safe cannot harm an unborn child ✓
 It is not an intrusive procedure that leaves a wound afterwards (You do not have to cut a person open to "see" inside.√

[16]

QUESTION 5

5.1 Charge can neither be created nor destroyed but merely transferred from one body to another. $\checkmark \checkmark$ OR

The total charge in a closed system remains constant.

The total charge in an isolated system is conserved.(2)

5.2 *X* has a deficiency of electrons. $\checkmark\checkmark$ (2)

5.3 Neutral means having equal number of electrons and protons. $\checkmark \checkmark$ (2) 5.4 *Y* to $X \checkmark$ (1)

5.5
$$Q = \frac{Q_1 + Q_2}{2} \checkmark$$

= $\frac{+6.4 \times \times 10^{-19} + 0}{2} \checkmark \checkmark$ (1 for Nr and 1 for Dr)
= $3.2 \times 10^{-19} C \checkmark$ (4)

5.6 Every charge in this universe is an integral multiples of the electron charge. $\sqrt[4]{(2)}$

5.7
$$n = \frac{\Delta Q}{Qe}$$

 $= \frac{-3.2 \times 10^{-19}}{-1.6 \times 10^{-19}} \checkmark \checkmark$ (1 for Nr and 1 for Dr) OR $\frac{3.2 \times 10^{-19}}{1.6 \times 10^{-19}}$
 $= 2 \checkmark$ (3)
[16]

QUESTION 6

6.1.1	a magnetic field is a region in space where another magnet or ferromagnetic material \checkmark will experience a force (noncontact) \checkmark	(2)
6.1.2	They are all non-contact forces. / are all field forces $\checkmark \checkmark$	(2)
6.1.3	A compass consist of a magnet \checkmark and the earth is a magnet. \checkmark The N-pole of the compass is attracted to the S-pole of the Earth and will point towards it. \checkmark	(3)
6.4.4		$\langle \alpha \rangle$

6.1.4 Aurora Borealis or Northern Lights or magnetic storms $\checkmark \checkmark$ (2)

- 6.1.5 A display of (different) colours in the sky \checkmark which you are most likely to see n the north pole region. \checkmark
- 6.1.6 Geographical north and South is determined as the points through which the axis of the Earth spin. \checkmark Magnetic north is determined by the direction in which a compass needle will point. \checkmark (2)
 - 6.2.1

Guidelines for marking the diagram:

Direction of field lines on both magnets \checkmark

A region of no field in between \checkmark	
Correct shape of field lines \checkmark	(3)
6.2.2 Further apart√√	(2)
6.2.3 A magnetic compass. √√	(2)

(2)

QUESTION 7

- 7.1.1 The Voltmeter 🗸
- 7.1.2 Electrical current is the amount of charge per second ✓✓ that flows past a specific point. OR
 Electrical current is the rate of flow of charge√.

7.1.3 Type of material used. **√**

- Length of the conductor. **√**
- Thickness of the conductor
- The **temperature** of the conductor.

(2)

7.2.1 <u>Ammeter connected in parallel to the resistor</u> **√** and

Voltmeter connected in series **√**in the circuit

(2)

7.2.2

Guidelines for marking the circuit diagram:

Switch shown \checkmark

Two cells in series ✓

Voltmeter across battery ✓

Ammeter in series with the resistor

[14]

(4)

QUESTION 8
8.1
$$\frac{1}{R_p} = \frac{1}{r_1} + \frac{1}{r_2}$$
 \checkmark
 $= \frac{1}{4} \checkmark + \frac{1}{12} \checkmark$
 $\therefore R_p = 3 \ \Omega \checkmark$ (4)

OR $R_p = (R_1R_2) \div (R_1 + R_2) = (12 \times 4) \div (12 + 4) = 3 \Omega$

8.2 $S_1 \checkmark S_1$ controls (stops) the flow of current in the entire circuit while S_2 controls (stops) the current to 12 Ω resistor. $\checkmark \checkmark$ (3) 8.3 Ammeter $\checkmark \checkmark$ (2) 8.4 Smaller than, Resistors in series are potential dividers. $\checkmark \checkmark$ (2) 8.5 $Q = |\Delta t \checkmark = 2 \times 10 \checkmark = 20 C \checkmark$ (3) 8.6 Decrease $\checkmark \checkmark$ (2) [16]

Total = 150