PHYSICAL SCIENCES GRADE 10 P1 JUNE 2016 PRE-TEST MEMO

QUESTION 1

1.1 $B \checkmark \checkmark$
$1.2 \mathrm{D} \checkmark \checkmark$
1.3 $A \checkmark \checkmark$
1.4 $\mathrm{B} \checkmark \checkmark$
$1.5 \mathrm{D} \checkmark \checkmark$
1.6 $A \checkmark \checkmark$
1.7 B $\checkmark \checkmark$
$1.8 B \checkmark \checkmark$
$1.9 B \checkmark \checkmark$
1.10 $D \checkmark \checkmark$
[20]

QUESTION 2

2.1.1 It is the maximum displacement of the particles $\boldsymbol{\checkmark}$ of the medium from the equilibrium(mean) position / state $\boldsymbol{\checkmark}$.
2.1.2 $\quad A_{A}=4 \times 0.5 \mathrm{~m}=2 \mathrm{~cm} \boldsymbol{\downarrow}$
$A_{B}=7 \times 0.5 \mathrm{~cm}=3.5 \mathrm{~cm} \boldsymbol{\downarrow}$
2.1.3 $\quad v_{a}=\frac{\Delta x}{\Delta t}=\frac{6 \times 0,5 \mathrm{~cm}}{3 \mathrm{~s}} \checkmark=1 \mathrm{~cm} . \mathrm{s}^{-1} \checkmark$
$v_{B}=\frac{\Delta x}{\Delta t}=\frac{9 \times 0,5 \mathrm{~cm}}{3 \mathrm{~s}} \quad \checkmark=1.5 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$

2.1.4

Mark allocation: correct amplitude $\boldsymbol{\checkmark}$
joined amplitude in negative direction (underneath the line) \checkmark

2.1.5 Destructive interference \checkmark

2.2.1 Area $1 \checkmark$
2.2.2 Area $2 \boldsymbol{\checkmark}$. The amount of waves per second (frequency) is more \checkmark than those at area1
2.3.1 $E=h f \checkmark$

$$
\begin{align*}
& =6.63 \times 10^{-34} \times 900 \times 10^{6} \\
& =5.97 \times 10^{-25} \mathrm{~J} \checkmark \tag{3}
\end{align*}
$$

2.3.2 Higher frequencies of electromagnetic radiation means higher penetration ability \checkmark of electromagnetic waves and a higher probability that the radiation would affect a person (through destroying molecular compound in the body). The scientist allege that the frequency of electromagnetic radiation from cell phones are to low to to have a considerable penetration ability \checkmark.

QUESTION 3

3.1
3.1.1 $v=\frac{\Delta x}{\Delta t}=\frac{200 \checkmark}{0,08 \checkmark}=2500 \mathrm{~ms}^{-1}$
3.1.2 $v=\frac{\Delta x}{\Delta t} \checkmark$

$$
\begin{equation*}
t=\frac{\Delta x}{v}=\frac{200}{340} \checkmark=0,59 s \tag{3}
\end{equation*}
$$

3.1.3 Longer \checkmark
(1)

3.2

3.2.1 Longitudinal $\checkmark \checkmark$
3.2.2 A, C or E (any one) $\checkmark \checkmark$
(2)

3.2.3 Rare fraction $\checkmark \checkmark$

3.2.4 A and C or C and E or B and D or D and F
3.2.5 $(6-2)=4 \mathrm{~cm}$ or $0.04 \mathrm{~m} \quad \checkmark \checkmark$
3.2.6 $v=f \times \lambda$
$f=\frac{v}{\lambda}=\frac{343}{0,04} \quad \checkmark=8575 \mathrm{~Hz} \checkmark$

3.3

3.3.1 Acceleration of charged particles.
(2)
3.3.2 (a) Gamma rays \checkmark
(1)
(b) Microwaves \checkmark
(1)
3.3.3 Any one $\checkmark \checkmark$
(2)

- That have different speeds (light $3 \times 10^{8} \mathrm{~ms}^{-1}$) or about $340 \mathrm{~ms}^{-1}$ sound in air
- Travel through vacuum but not sound.
- Transverse waves but sound is longitudinal.

QUESTION 4

4.1.1 A transverse wave as a succession of transverse pulses $\checkmark \checkmark$ or
A transverse wave is a wave where the movement of the particles of the medium is perpendicular \checkmark (at a right angle) to the direction of propagation of the wave. \checkmark
4.1.2 They have the same amplitude. \checkmark
4.1.3 They have different frequencies \checkmark The blue light has a higher frequency than the red light. \checkmark or the wavelenght of blue light is smaller than the wavelength of red light
4.1.4 $\quad \mathrm{f}=\frac{1}{p}$ or $f=\frac{1}{T} \sqrt{ }$
$\mathrm{T}=\frac{1}{4 \times 10^{12}} \mathfrak{J}=2,5 \times 10^{-13} \mathrm{~s} \checkmark$
4.1.5 $\quad v=f \lambda \checkmark$

$$
\begin{align*}
& =4 \times 10^{12} \checkmark \times 0,7 \times 10^{-6} \checkmark \tag{4}\\
& =2,8 \times 10^{6} \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark
\end{align*}
$$

4.2.1 when a wave encounters a boundary between two media, \checkmark part of the wave is reflected, part is absorbed and part is transmitted \checkmark
4.2.2 If is safe - cannot harm an unborn child \checkmark

It is not an intrusive procedure that leaves a wound afterwards (You do not have to cut a person open to "see" inside. \checkmark

QUESTION 5

5.1 Charge can neither be created nor destroyed but merely transferred from one body to another. $\checkmark \checkmark$ OR
The total charge in a closed system remains constant.
OR
The total charge in an isolated system is conserved.
5.2 X has a deficiency of electrons.
$\checkmark \checkmark$
(2)
5.3 Neutral means having equal number of electrons and protons.
5.4 Y to X^{\checkmark}
(1)
5.5 $Q=\frac{Q_{1}+Q_{2}}{2} \quad \checkmark$

$$
\begin{array}{ll}
=\frac{+6,4 \times \times 10^{-19}+0}{2} \checkmark \checkmark & (1 \text { for } \mathrm{Nr} \text { and } 1 \text { for } \mathrm{Dr}) \\
=3,2 \times 10^{-19} \mathrm{C} & \checkmark \tag{4}
\end{array}
$$

5.6 Every charge in this universe is an integral multiples of the electron charge. $\checkmark \checkmark(2)$
$5.7 n=\frac{\Delta Q}{Q e}$

$$
\begin{array}{lccc}
=\frac{-3,2 \times 10^{-19}}{-1,6 \times 10^{-19}} \checkmark \checkmark & \text { (1 for Nr and } 1 \text { for Dr) } & \text { OR } \frac{3,2 \times 10^{-19}}{1,6 \times 10^{-19}} \\
=2 \checkmark & \text { (3) } & \tag{3}
\end{array}
$$

[16]

QUESTION 6

6.1.1 a magnetic field is a region in space where another magnet or ferromagnetic material $\sqrt{ }$ will experience a force (noncontact) \checkmark

They are all non-contact forces. / are all field forces $\checkmark \checkmark$
6.1.3 A compass consist of a magnet \checkmark and the earth is a magnet. \checkmark The N-pole of the compass is attracted to the S-pole of the Earth and will point towards it. \checkmark
6.1.5 A display of (different) colours in the sky \checkmark which you are most likely to see n the north pole region. \checkmark
6.1.6 Geographical north and South is determined as the points through which the axis of the Earth spin. \checkmark Magnetic north is determined by the direction in which a compass needle will point. \checkmark
6.2.1

Guidelines for marking the diagram:

Direction of field lines on both magnets \checkmark
A region of no field in between \checkmark
Correct shape of field lines \checkmark
6.2.2 Further apart $\checkmark \checkmark$
6.2.3 A magnetic compass. $\checkmark \checkmark$

QUESTION 7

7.1.1 The Voltmeter $\checkmark \checkmark$
(2)
7.1.2 Electrical current is the amount of charge per second $\checkmark \checkmark$ that flows past a specific point. OR

Electrical current is the rate of flow of charge $\sqrt{ }$.
7.1.3 Type of material used.

- Length of the conductor.
- Thickness of the conductor
- The temperature of the conductor.

(Any TWO = 4 marks)

7.2.1 Ammeter connected in parallel to the resistor \checkmark and Voltmeter connected in series $\boldsymbol{\checkmark}$ in the circuit

7.2.2

Guidelines for marking the circuit diagram:

Switch shown
Two cells in series \downarrow
Voltmeter across battery \downarrow
Ammeter in series with the resistor \checkmark
(4)

QUESTION 8

$8.1 \frac{1}{R_{p}}=\frac{1}{r_{1}}+\frac{1}{r_{2}} \quad \checkmark$

$$
\begin{align*}
& =\frac{1}{4} \checkmark+\frac{1}{12} \checkmark \\
& \therefore R_{p}=3 \Omega \tag{4}
\end{align*}
$$

OR $\quad R_{p}=\left(R_{1} R_{2}\right) \div\left(R_{1}+R_{2}\right)=(12 \times 4) \div(12+4)=3 \Omega$
$8.2 S_{1} \checkmark S_{1}$ controls (stops) the flow of current in the entire circuit while S_{2} controls (stops) the current to 12Ω resistor.
$\checkmark \checkmark$
8.3 Ammeter $\sqrt{ } \checkmark$
8.4 Smaller than, Resistors in series are potential dividers. $\checkmark \checkmark$
$8.5 Q=1 \Delta t \checkmark=2 \times 10 \checkmark=20 C$
8.6 Decrease
[16]
Total $=\mathbf{1 5 0}$

